MakeItFrom.com
Menu (ESC)

C96700 Copper vs. S41003 Stainless Steel

C96700 copper belongs to the copper alloys classification, while S41003 stainless steel belongs to the iron alloys. There are 27 material properties with values for both materials. Properties with values for just one material (7, in this case) are not shown.

For each property being compared, the top bar is C96700 copper and the bottom bar is S41003 stainless steel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 140
190
Elongation at Break, % 10
21
Poisson's Ratio 0.33
0.28
Rockwell C Hardness 26
17
Shear Modulus, GPa 53
76
Tensile Strength: Ultimate (UTS), MPa 1210
520
Tensile Strength: Yield (Proof), MPa 550
310

Thermal Properties

Latent Heat of Fusion, J/g 250
270
Maximum Temperature: Mechanical, °C 310
720
Melting Completion (Liquidus), °C 1170
1440
Melting Onset (Solidus), °C 1110
1400
Specific Heat Capacity, J/kg-K 400
480
Thermal Conductivity, W/m-K 30
27
Thermal Expansion, µm/m-K 15
10

Otherwise Unclassified Properties

Base Metal Price, % relative 90
7.0
Density, g/cm3 8.8
7.8
Embodied Carbon, kg CO2/kg material 9.5
1.9
Embodied Energy, MJ/kg 140
27
Embodied Water, L/kg 280
97

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 99
92
Resilience: Unit (Modulus of Resilience), kJ/m3 1080
240
Stiffness to Weight: Axial, points 8.9
14
Stiffness to Weight: Bending, points 20
25
Strength to Weight: Axial, points 38
19
Strength to Weight: Bending, points 29
18
Thermal Diffusivity, mm2/s 8.5
7.2
Thermal Shock Resistance, points 40
19

Alloy Composition

Beryllium (Be), % 1.1 to 1.2
0
Carbon (C), % 0
0 to 0.030
Chromium (Cr), % 0
10.5 to 12.5
Copper (Cu), % 62.4 to 68.8
0
Iron (Fe), % 0.4 to 1.0
83.4 to 89.5
Lead (Pb), % 0 to 0.010
0
Manganese (Mn), % 0.4 to 1.0
0 to 1.5
Nickel (Ni), % 29 to 33
0 to 1.5
Nitrogen (N), % 0
0 to 0.030
Phosphorus (P), % 0
0 to 0.040
Silicon (Si), % 0 to 0.15
0 to 1.0
Sulfur (S), % 0
0 to 0.030
Titanium (Ti), % 0.15 to 0.35
0
Zirconium (Zr), % 0.15 to 0.35
0
Residuals, % 0 to 0.5
0