MakeItFrom.com
Menu (ESC)

C96700 Copper vs. S82121 Stainless Steel

C96700 copper belongs to the copper alloys classification, while S82121 stainless steel belongs to the iron alloys. There are 27 material properties with values for both materials. Properties with values for just one material (7, in this case) are not shown.

For each property being compared, the top bar is C96700 copper and the bottom bar is S82121 stainless steel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 140
200
Elongation at Break, % 10
28
Poisson's Ratio 0.33
0.27
Rockwell C Hardness 26
26
Shear Modulus, GPa 53
78
Tensile Strength: Ultimate (UTS), MPa 1210
730
Tensile Strength: Yield (Proof), MPa 550
510

Thermal Properties

Latent Heat of Fusion, J/g 250
290
Maximum Temperature: Mechanical, °C 310
1020
Melting Completion (Liquidus), °C 1170
1430
Melting Onset (Solidus), °C 1110
1380
Specific Heat Capacity, J/kg-K 400
480
Thermal Conductivity, W/m-K 30
15
Thermal Expansion, µm/m-K 15
13

Otherwise Unclassified Properties

Base Metal Price, % relative 90
14
Density, g/cm3 8.8
7.7
Embodied Carbon, kg CO2/kg material 9.5
2.8
Embodied Energy, MJ/kg 140
40
Embodied Water, L/kg 280
150

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 99
180
Resilience: Unit (Modulus of Resilience), kJ/m3 1080
660
Stiffness to Weight: Axial, points 8.9
14
Stiffness to Weight: Bending, points 20
25
Strength to Weight: Axial, points 38
26
Strength to Weight: Bending, points 29
23
Thermal Diffusivity, mm2/s 8.5
4.0
Thermal Shock Resistance, points 40
20

Alloy Composition

Beryllium (Be), % 1.1 to 1.2
0
Carbon (C), % 0
0 to 0.035
Chromium (Cr), % 0
21 to 23
Copper (Cu), % 62.4 to 68.8
0.2 to 1.2
Iron (Fe), % 0.4 to 1.0
66.7 to 75.4
Lead (Pb), % 0 to 0.010
0
Manganese (Mn), % 0.4 to 1.0
1.0 to 2.5
Molybdenum (Mo), % 0
0.3 to 1.3
Nickel (Ni), % 29 to 33
2.0 to 4.0
Nitrogen (N), % 0
0.15 to 0.25
Phosphorus (P), % 0
0 to 0.040
Silicon (Si), % 0 to 0.15
0 to 1.0
Sulfur (S), % 0
0 to 0.010
Titanium (Ti), % 0.15 to 0.35
0
Zirconium (Zr), % 0.15 to 0.35
0
Residuals, % 0 to 0.5
0