MakeItFrom.com
Menu (ESC)

C96800 Copper vs. 4147 Aluminum

C96800 copper belongs to the copper alloys classification, while 4147 aluminum belongs to the aluminum alloys. There are 28 material properties with values for both materials. Properties with values for just one material (3, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is C96800 copper and the bottom bar is 4147 aluminum.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 120
72
Elongation at Break, % 3.4
3.3
Poisson's Ratio 0.34
0.33
Shear Modulus, GPa 46
27
Tensile Strength: Ultimate (UTS), MPa 1010
110
Tensile Strength: Yield (Proof), MPa 860
59

Thermal Properties

Latent Heat of Fusion, J/g 220
570
Maximum Temperature: Mechanical, °C 220
160
Melting Completion (Liquidus), °C 1120
580
Melting Onset (Solidus), °C 1060
560
Specific Heat Capacity, J/kg-K 390
900
Thermal Conductivity, W/m-K 52
130
Thermal Expansion, µm/m-K 17
21

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 10
33
Electrical Conductivity: Equal Weight (Specific), % IACS 10
120

Otherwise Unclassified Properties

Base Metal Price, % relative 34
9.5
Density, g/cm3 8.9
2.5
Embodied Carbon, kg CO2/kg material 3.4
7.7
Embodied Energy, MJ/kg 52
140
Embodied Water, L/kg 300
1050

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 33
3.1
Resilience: Unit (Modulus of Resilience), kJ/m3 3000
24
Stiffness to Weight: Axial, points 7.6
16
Stiffness to Weight: Bending, points 19
55
Strength to Weight: Axial, points 32
12
Strength to Weight: Bending, points 25
20
Thermal Diffusivity, mm2/s 15
58
Thermal Shock Resistance, points 35
5.2

Alloy Composition

Aluminum (Al), % 0 to 0.1
85 to 88.9
Antimony (Sb), % 0 to 0.020
0
Beryllium (Be), % 0
0 to 0.00030
Copper (Cu), % 87.1 to 90.5
0 to 0.25
Iron (Fe), % 0 to 0.5
0 to 0.8
Lead (Pb), % 0 to 0.0050
0
Magnesium (Mg), % 0
0.1 to 0.5
Manganese (Mn), % 0.050 to 0.3
0 to 0.1
Nickel (Ni), % 9.5 to 10.5
0
Phosphorus (P), % 0 to 0.0050
0
Silicon (Si), % 0
11 to 13
Sulfur (S), % 0 to 0.0025
0
Zinc (Zn), % 0 to 1.0
0 to 0.2
Residuals, % 0
0 to 0.15