MakeItFrom.com
Menu (ESC)

C96800 Copper vs. N08801 Stainless Steel

C96800 copper belongs to the copper alloys classification, while N08801 stainless steel belongs to the iron alloys. There are 28 material properties with values for both materials. Properties with values for just one material (4, in this case) are not shown.

For each property being compared, the top bar is C96800 copper and the bottom bar is N08801 stainless steel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 120
200
Elongation at Break, % 3.4
34
Poisson's Ratio 0.34
0.28
Shear Modulus, GPa 46
77
Tensile Strength: Ultimate (UTS), MPa 1010
860
Tensile Strength: Yield (Proof), MPa 860
190

Thermal Properties

Latent Heat of Fusion, J/g 220
300
Maximum Temperature: Mechanical, °C 220
1090
Melting Completion (Liquidus), °C 1120
1390
Melting Onset (Solidus), °C 1060
1360
Specific Heat Capacity, J/kg-K 390
480
Thermal Conductivity, W/m-K 52
12
Thermal Expansion, µm/m-K 17
16

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 10
1.7
Electrical Conductivity: Equal Weight (Specific), % IACS 10
1.9

Otherwise Unclassified Properties

Base Metal Price, % relative 34
30
Density, g/cm3 8.9
8.0
Embodied Carbon, kg CO2/kg material 3.4
5.5
Embodied Energy, MJ/kg 52
79
Embodied Water, L/kg 300
200

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 33
220
Resilience: Unit (Modulus of Resilience), kJ/m3 3000
92
Stiffness to Weight: Axial, points 7.6
14
Stiffness to Weight: Bending, points 19
24
Strength to Weight: Axial, points 32
30
Strength to Weight: Bending, points 25
25
Thermal Diffusivity, mm2/s 15
3.3
Thermal Shock Resistance, points 35
20

Alloy Composition

Aluminum (Al), % 0 to 0.1
0
Antimony (Sb), % 0 to 0.020
0
Carbon (C), % 0
0 to 0.1
Chromium (Cr), % 0
19 to 22
Copper (Cu), % 87.1 to 90.5
0 to 0.5
Iron (Fe), % 0 to 0.5
39.5 to 50.3
Lead (Pb), % 0 to 0.0050
0
Manganese (Mn), % 0.050 to 0.3
0 to 1.5
Nickel (Ni), % 9.5 to 10.5
30 to 34
Phosphorus (P), % 0 to 0.0050
0
Silicon (Si), % 0
0 to 1.0
Sulfur (S), % 0 to 0.0025
0 to 0.015
Titanium (Ti), % 0
0.75 to 1.5
Zinc (Zn), % 0 to 1.0
0
Residuals, % 0 to 0.5
0