MakeItFrom.com
Menu (ESC)

C96800 Copper vs. N10276 Nickel

C96800 copper belongs to the copper alloys classification, while N10276 nickel belongs to the nickel alloys. There are 28 material properties with values for both materials. Properties with values for just one material (2, in this case) are not shown.

For each property being compared, the top bar is C96800 copper and the bottom bar is N10276 nickel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 120
220
Elongation at Break, % 3.4
47
Poisson's Ratio 0.34
0.29
Shear Modulus, GPa 46
84
Tensile Strength: Ultimate (UTS), MPa 1010
780
Tensile Strength: Yield (Proof), MPa 860
320

Thermal Properties

Latent Heat of Fusion, J/g 220
320
Maximum Temperature: Mechanical, °C 220
960
Melting Completion (Liquidus), °C 1120
1370
Melting Onset (Solidus), °C 1060
1320
Specific Heat Capacity, J/kg-K 390
410
Thermal Conductivity, W/m-K 52
9.1
Thermal Expansion, µm/m-K 17
11

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 10
1.3
Electrical Conductivity: Equal Weight (Specific), % IACS 10
1.3

Otherwise Unclassified Properties

Base Metal Price, % relative 34
70
Density, g/cm3 8.9
9.1
Embodied Carbon, kg CO2/kg material 3.4
13
Embodied Energy, MJ/kg 52
170
Embodied Water, L/kg 300
280

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 33
300
Resilience: Unit (Modulus of Resilience), kJ/m3 3000
230
Stiffness to Weight: Axial, points 7.6
13
Stiffness to Weight: Bending, points 19
22
Strength to Weight: Axial, points 32
24
Strength to Weight: Bending, points 25
21
Thermal Diffusivity, mm2/s 15
2.4
Thermal Shock Resistance, points 35
23

Alloy Composition

Aluminum (Al), % 0 to 0.1
0
Antimony (Sb), % 0 to 0.020
0
Carbon (C), % 0
0 to 0.010
Chromium (Cr), % 0
14.5 to 16.5
Cobalt (Co), % 0
0 to 2.5
Copper (Cu), % 87.1 to 90.5
0
Iron (Fe), % 0 to 0.5
4.0 to 7.0
Lead (Pb), % 0 to 0.0050
0
Manganese (Mn), % 0.050 to 0.3
0 to 0.010
Molybdenum (Mo), % 0
15 to 17
Nickel (Ni), % 9.5 to 10.5
51 to 63.5
Phosphorus (P), % 0 to 0.0050
0 to 0.040
Silicon (Si), % 0
0 to 0.080
Sulfur (S), % 0 to 0.0025
0 to 0.030
Tungsten (W), % 0
3.0 to 4.5
Vanadium (V), % 0
0 to 0.35
Zinc (Zn), % 0 to 1.0
0
Residuals, % 0 to 0.5
0