MakeItFrom.com
Menu (ESC)

C96800 Copper vs. S31266 Stainless Steel

C96800 copper belongs to the copper alloys classification, while S31266 stainless steel belongs to the iron alloys. There are 28 material properties with values for both materials. Properties with values for just one material (5, in this case) are not shown.

For each property being compared, the top bar is C96800 copper and the bottom bar is S31266 stainless steel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 120
210
Elongation at Break, % 3.4
40
Poisson's Ratio 0.34
0.28
Shear Modulus, GPa 46
81
Tensile Strength: Ultimate (UTS), MPa 1010
860
Tensile Strength: Yield (Proof), MPa 860
470

Thermal Properties

Latent Heat of Fusion, J/g 220
310
Maximum Temperature: Mechanical, °C 220
1100
Melting Completion (Liquidus), °C 1120
1470
Melting Onset (Solidus), °C 1060
1420
Specific Heat Capacity, J/kg-K 390
460
Thermal Conductivity, W/m-K 52
12
Thermal Expansion, µm/m-K 17
16

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 10
1.8
Electrical Conductivity: Equal Weight (Specific), % IACS 10
2.0

Otherwise Unclassified Properties

Base Metal Price, % relative 34
37
Density, g/cm3 8.9
8.2
Embodied Carbon, kg CO2/kg material 3.4
6.5
Embodied Energy, MJ/kg 52
89
Embodied Water, L/kg 300
220

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 33
290
Resilience: Unit (Modulus of Resilience), kJ/m3 3000
540
Stiffness to Weight: Axial, points 7.6
14
Stiffness to Weight: Bending, points 19
24
Strength to Weight: Axial, points 32
29
Strength to Weight: Bending, points 25
24
Thermal Diffusivity, mm2/s 15
3.1
Thermal Shock Resistance, points 35
18

Alloy Composition

Aluminum (Al), % 0 to 0.1
0
Antimony (Sb), % 0 to 0.020
0
Carbon (C), % 0
0 to 0.030
Chromium (Cr), % 0
23 to 25
Copper (Cu), % 87.1 to 90.5
1.0 to 2.5
Iron (Fe), % 0 to 0.5
34.1 to 46
Lead (Pb), % 0 to 0.0050
0
Manganese (Mn), % 0.050 to 0.3
2.0 to 4.0
Molybdenum (Mo), % 0
5.2 to 6.2
Nickel (Ni), % 9.5 to 10.5
21 to 24
Nitrogen (N), % 0
0.35 to 0.6
Phosphorus (P), % 0 to 0.0050
0 to 0.035
Silicon (Si), % 0
0 to 1.0
Sulfur (S), % 0 to 0.0025
0 to 0.020
Tungsten (W), % 0
1.5 to 2.5
Zinc (Zn), % 0 to 1.0
0
Residuals, % 0 to 0.5
0