MakeItFrom.com
Menu (ESC)

C96900 Copper-nickel vs. EN 1.4589 Stainless Steel

C96900 copper-nickel belongs to the copper alloys classification, while EN 1.4589 stainless steel belongs to the iron alloys. There are 26 material properties with values for both materials. Properties with values for just one material (6, in this case) are not shown.

For each property being compared, the top bar is C96900 copper-nickel and the bottom bar is EN 1.4589 stainless steel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 120
200
Elongation at Break, % 4.5
17
Poisson's Ratio 0.34
0.28
Shear Modulus, GPa 45
77
Tensile Strength: Ultimate (UTS), MPa 850
650
Tensile Strength: Yield (Proof), MPa 830
440

Thermal Properties

Latent Heat of Fusion, J/g 210
280
Maximum Temperature: Mechanical, °C 210
810
Melting Completion (Liquidus), °C 1060
1450
Melting Onset (Solidus), °C 960
1400
Specific Heat Capacity, J/kg-K 380
480
Thermal Expansion, µm/m-K 17
11

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 9.0
2.9
Electrical Conductivity: Equal Weight (Specific), % IACS 9.2
3.3

Otherwise Unclassified Properties

Base Metal Price, % relative 39
9.5
Density, g/cm3 8.8
7.8
Embodied Carbon, kg CO2/kg material 4.6
2.4
Embodied Energy, MJ/kg 72
34
Embodied Water, L/kg 360
110

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 38
96
Resilience: Unit (Modulus of Resilience), kJ/m3 2820
490
Stiffness to Weight: Axial, points 7.7
14
Stiffness to Weight: Bending, points 19
25
Strength to Weight: Axial, points 27
23
Strength to Weight: Bending, points 23
22
Thermal Shock Resistance, points 30
23

Alloy Composition

Carbon (C), % 0
0 to 0.080
Chromium (Cr), % 0
13.5 to 15.5
Copper (Cu), % 73.6 to 78
0
Iron (Fe), % 0 to 0.5
78.2 to 85
Lead (Pb), % 0 to 0.020
0
Magnesium (Mg), % 0 to 0.15
0
Manganese (Mn), % 0.050 to 0.3
0 to 1.0
Molybdenum (Mo), % 0
0.2 to 1.2
Nickel (Ni), % 14.5 to 15.5
1.0 to 2.5
Niobium (Nb), % 0 to 0.1
0
Phosphorus (P), % 0
0 to 0.040
Silicon (Si), % 0 to 0.3
0 to 1.0
Sulfur (S), % 0
0 to 0.015
Tin (Sn), % 7.5 to 8.5
0
Titanium (Ti), % 0
0.3 to 0.5
Zinc (Zn), % 0 to 0.5
0
Residuals, % 0 to 0.5
0