MakeItFrom.com
Menu (ESC)

C96900 Copper-nickel vs. EN 1.4828 Stainless Steel

C96900 copper-nickel belongs to the copper alloys classification, while EN 1.4828 stainless steel belongs to the iron alloys. There are 26 material properties with values for both materials. Properties with values for just one material (7, in this case) are not shown.

For each property being compared, the top bar is C96900 copper-nickel and the bottom bar is EN 1.4828 stainless steel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 120
200
Elongation at Break, % 4.5
33
Poisson's Ratio 0.34
0.28
Shear Modulus, GPa 45
77
Tensile Strength: Ultimate (UTS), MPa 850
650
Tensile Strength: Yield (Proof), MPa 830
260

Thermal Properties

Latent Heat of Fusion, J/g 210
320
Maximum Temperature: Mechanical, °C 210
1000
Melting Completion (Liquidus), °C 1060
1400
Melting Onset (Solidus), °C 960
1360
Specific Heat Capacity, J/kg-K 380
490
Thermal Expansion, µm/m-K 17
17

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 9.0
2.0
Electrical Conductivity: Equal Weight (Specific), % IACS 9.2
2.4

Otherwise Unclassified Properties

Base Metal Price, % relative 39
17
Density, g/cm3 8.8
7.7
Embodied Carbon, kg CO2/kg material 4.6
3.4
Embodied Energy, MJ/kg 72
48
Embodied Water, L/kg 360
150

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 38
170
Resilience: Unit (Modulus of Resilience), kJ/m3 2820
170
Stiffness to Weight: Axial, points 7.7
14
Stiffness to Weight: Bending, points 19
25
Strength to Weight: Axial, points 27
23
Strength to Weight: Bending, points 23
22
Thermal Shock Resistance, points 30
14

Alloy Composition

Carbon (C), % 0
0 to 0.2
Chromium (Cr), % 0
19 to 21
Copper (Cu), % 73.6 to 78
0
Iron (Fe), % 0 to 0.5
61.1 to 68.5
Lead (Pb), % 0 to 0.020
0
Magnesium (Mg), % 0 to 0.15
0
Manganese (Mn), % 0.050 to 0.3
0 to 2.0
Nickel (Ni), % 14.5 to 15.5
11 to 13
Niobium (Nb), % 0 to 0.1
0
Nitrogen (N), % 0
0 to 0.1
Phosphorus (P), % 0
0 to 0.045
Silicon (Si), % 0 to 0.3
1.5 to 2.5
Sulfur (S), % 0
0 to 0.015
Tin (Sn), % 7.5 to 8.5
0
Zinc (Zn), % 0 to 0.5
0
Residuals, % 0 to 0.5
0