MakeItFrom.com
Menu (ESC)

C96900 Copper-nickel vs. EN 1.7380 Steel

C96900 copper-nickel belongs to the copper alloys classification, while EN 1.7380 steel belongs to the iron alloys. There are 26 material properties with values for both materials. Properties with values for just one material (7, in this case) are not shown.

For each property being compared, the top bar is C96900 copper-nickel and the bottom bar is EN 1.7380 steel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 120
190
Elongation at Break, % 4.5
19 to 20
Poisson's Ratio 0.34
0.29
Shear Modulus, GPa 45
74
Tensile Strength: Ultimate (UTS), MPa 850
540 to 550
Tensile Strength: Yield (Proof), MPa 830
290 to 330

Thermal Properties

Latent Heat of Fusion, J/g 210
260
Maximum Temperature: Mechanical, °C 210
460
Melting Completion (Liquidus), °C 1060
1470
Melting Onset (Solidus), °C 960
1430
Specific Heat Capacity, J/kg-K 380
470
Thermal Expansion, µm/m-K 17
13

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 9.0
7.6
Electrical Conductivity: Equal Weight (Specific), % IACS 9.2
8.7

Otherwise Unclassified Properties

Base Metal Price, % relative 39
3.8
Density, g/cm3 8.8
7.9
Embodied Carbon, kg CO2/kg material 4.6
1.8
Embodied Energy, MJ/kg 72
23
Embodied Water, L/kg 360
59

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 38
87 to 98
Resilience: Unit (Modulus of Resilience), kJ/m3 2820
230 to 280
Stiffness to Weight: Axial, points 7.7
13
Stiffness to Weight: Bending, points 19
24
Strength to Weight: Axial, points 27
19 to 20
Strength to Weight: Bending, points 23
19
Thermal Shock Resistance, points 30
15 to 16

Alloy Composition

Carbon (C), % 0
0.080 to 0.14
Chromium (Cr), % 0
2.0 to 2.5
Copper (Cu), % 73.6 to 78
0 to 0.3
Iron (Fe), % 0 to 0.5
94.6 to 96.6
Lead (Pb), % 0 to 0.020
0
Magnesium (Mg), % 0 to 0.15
0
Manganese (Mn), % 0.050 to 0.3
0.4 to 0.8
Molybdenum (Mo), % 0
0.9 to 1.1
Nickel (Ni), % 14.5 to 15.5
0
Niobium (Nb), % 0 to 0.1
0
Nitrogen (N), % 0
0 to 0.012
Phosphorus (P), % 0
0 to 0.020
Silicon (Si), % 0 to 0.3
0 to 0.5
Sulfur (S), % 0
0 to 0.010
Tin (Sn), % 7.5 to 8.5
0
Zinc (Zn), % 0 to 0.5
0
Residuals, % 0 to 0.5
0