MakeItFrom.com
Menu (ESC)

C96900 Copper-nickel vs. N06985 Nickel

C96900 copper-nickel belongs to the copper alloys classification, while N06985 nickel belongs to the nickel alloys. There are 26 material properties with values for both materials. Properties with values for just one material (4, in this case) are not shown.

For each property being compared, the top bar is C96900 copper-nickel and the bottom bar is N06985 nickel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 120
210
Elongation at Break, % 4.5
45
Poisson's Ratio 0.34
0.28
Shear Modulus, GPa 45
80
Tensile Strength: Ultimate (UTS), MPa 850
690
Tensile Strength: Yield (Proof), MPa 830
260

Thermal Properties

Latent Heat of Fusion, J/g 210
320
Maximum Temperature: Mechanical, °C 210
990
Melting Completion (Liquidus), °C 1060
1350
Melting Onset (Solidus), °C 960
1260
Specific Heat Capacity, J/kg-K 380
450
Thermal Expansion, µm/m-K 17
15

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 9.0
1.5
Electrical Conductivity: Equal Weight (Specific), % IACS 9.2
1.6

Otherwise Unclassified Properties

Base Metal Price, % relative 39
55
Density, g/cm3 8.8
8.4
Embodied Carbon, kg CO2/kg material 4.6
8.8
Embodied Energy, MJ/kg 72
120
Embodied Water, L/kg 360
270

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 38
250
Resilience: Unit (Modulus of Resilience), kJ/m3 2820
160
Stiffness to Weight: Axial, points 7.7
14
Stiffness to Weight: Bending, points 19
23
Strength to Weight: Axial, points 27
23
Strength to Weight: Bending, points 23
21
Thermal Shock Resistance, points 30
16

Alloy Composition

Carbon (C), % 0
0 to 0.015
Chromium (Cr), % 0
21 to 23.5
Cobalt (Co), % 0
0 to 5.0
Copper (Cu), % 73.6 to 78
1.5 to 2.5
Iron (Fe), % 0 to 0.5
18 to 21
Lead (Pb), % 0 to 0.020
0
Magnesium (Mg), % 0 to 0.15
0
Manganese (Mn), % 0.050 to 0.3
0 to 1.0
Molybdenum (Mo), % 0
6.0 to 8.0
Nickel (Ni), % 14.5 to 15.5
35.9 to 53.5
Niobium (Nb), % 0 to 0.1
0 to 0.5
Phosphorus (P), % 0
0 to 0.040
Silicon (Si), % 0 to 0.3
0 to 1.0
Sulfur (S), % 0
0 to 0.030
Tin (Sn), % 7.5 to 8.5
0
Tungsten (W), % 0
0 to 1.5
Zinc (Zn), % 0 to 0.5
0
Residuals, % 0 to 0.5
0