MakeItFrom.com
Menu (ESC)

C96900 Copper-nickel vs. S30815 Stainless Steel

C96900 copper-nickel belongs to the copper alloys classification, while S30815 stainless steel belongs to the iron alloys. There are 26 material properties with values for both materials. Properties with values for just one material (9, in this case) are not shown.

For each property being compared, the top bar is C96900 copper-nickel and the bottom bar is S30815 stainless steel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 120
200
Elongation at Break, % 4.5
45
Poisson's Ratio 0.34
0.28
Shear Modulus, GPa 45
77
Tensile Strength: Ultimate (UTS), MPa 850
680
Tensile Strength: Yield (Proof), MPa 830
350

Thermal Properties

Latent Heat of Fusion, J/g 210
310
Maximum Temperature: Mechanical, °C 210
1020
Melting Completion (Liquidus), °C 1060
1400
Melting Onset (Solidus), °C 960
1360
Specific Heat Capacity, J/kg-K 380
490
Thermal Expansion, µm/m-K 17
17

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 9.0
2.0
Electrical Conductivity: Equal Weight (Specific), % IACS 9.2
2.4

Otherwise Unclassified Properties

Base Metal Price, % relative 39
17
Density, g/cm3 8.8
7.7
Embodied Carbon, kg CO2/kg material 4.6
3.3
Embodied Energy, MJ/kg 72
47
Embodied Water, L/kg 360
160

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 38
260
Resilience: Unit (Modulus of Resilience), kJ/m3 2820
310
Stiffness to Weight: Axial, points 7.7
14
Stiffness to Weight: Bending, points 19
25
Strength to Weight: Axial, points 27
25
Strength to Weight: Bending, points 23
22
Thermal Shock Resistance, points 30
15

Alloy Composition

Carbon (C), % 0
0.050 to 0.1
Cerium (Ce), % 0
0.030 to 0.080
Chromium (Cr), % 0
20 to 22
Copper (Cu), % 73.6 to 78
0
Iron (Fe), % 0 to 0.5
62.8 to 68.4
Lead (Pb), % 0 to 0.020
0
Magnesium (Mg), % 0 to 0.15
0
Manganese (Mn), % 0.050 to 0.3
0 to 0.8
Nickel (Ni), % 14.5 to 15.5
10 to 12
Niobium (Nb), % 0 to 0.1
0
Nitrogen (N), % 0
0.14 to 0.2
Phosphorus (P), % 0
0 to 0.040
Silicon (Si), % 0 to 0.3
1.4 to 2.0
Sulfur (S), % 0
0 to 0.030
Tin (Sn), % 7.5 to 8.5
0
Zinc (Zn), % 0 to 0.5
0
Residuals, % 0 to 0.5
0