MakeItFrom.com
Menu (ESC)

C97400 Nickel Silver vs. 6082 Aluminum

C97400 nickel silver belongs to the copper alloys classification, while 6082 aluminum belongs to the aluminum alloys. There are 29 material properties with values for both materials. Properties with values for just one material (2, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is C97400 nickel silver and the bottom bar is 6082 aluminum.

Metric UnitsUS Customary Units

Mechanical Properties

Brinell Hardness 70
40 to 95
Elastic (Young's, Tensile) Modulus, GPa 120
69
Elongation at Break, % 20
6.3 to 18
Poisson's Ratio 0.33
0.33
Shear Modulus, GPa 44
26
Tensile Strength: Ultimate (UTS), MPa 260
140 to 340
Tensile Strength: Yield (Proof), MPa 120
85 to 320

Thermal Properties

Latent Heat of Fusion, J/g 190
410
Maximum Temperature: Mechanical, °C 180
170
Melting Completion (Liquidus), °C 1100
650
Melting Onset (Solidus), °C 1070
580
Specific Heat Capacity, J/kg-K 380
900
Thermal Conductivity, W/m-K 27
160
Thermal Expansion, µm/m-K 18
23

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 6.0
42
Electrical Conductivity: Equal Weight (Specific), % IACS 6.3
140

Otherwise Unclassified Properties

Base Metal Price, % relative 33
9.5
Density, g/cm3 8.6
2.7
Embodied Carbon, kg CO2/kg material 4.1
8.3
Embodied Energy, MJ/kg 64
150
Embodied Water, L/kg 320
1170

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 43
19 to 43
Resilience: Unit (Modulus of Resilience), kJ/m3 59
52 to 710
Stiffness to Weight: Axial, points 7.5
14
Stiffness to Weight: Bending, points 19
50
Strength to Weight: Axial, points 8.5
14 to 35
Strength to Weight: Bending, points 11
21 to 40
Thermal Diffusivity, mm2/s 8.3
67
Thermal Shock Resistance, points 8.8
6.0 to 15

Alloy Composition

Aluminum (Al), % 0
95.2 to 98.3
Chromium (Cr), % 0
0 to 0.25
Copper (Cu), % 58 to 61
0 to 0.1
Iron (Fe), % 0 to 1.5
0 to 0.5
Lead (Pb), % 4.5 to 5.5
0
Magnesium (Mg), % 0
0.6 to 1.2
Manganese (Mn), % 0 to 0.5
0.4 to 1.0
Nickel (Ni), % 15.5 to 17
0
Silicon (Si), % 0
0.7 to 1.3
Tin (Sn), % 2.5 to 3.5
0
Titanium (Ti), % 0
0 to 0.1
Zinc (Zn), % 10 to 19.5
0 to 0.2
Residuals, % 0
0 to 0.15