MakeItFrom.com
Menu (ESC)

C97400 Nickel Silver vs. AISI 431 Stainless Steel

C97400 nickel silver belongs to the copper alloys classification, while AISI 431 stainless steel belongs to the iron alloys. There are 29 material properties with values for both materials. Properties with values for just one material (5, in this case) are not shown.

For each property being compared, the top bar is C97400 nickel silver and the bottom bar is AISI 431 stainless steel.

Metric UnitsUS Customary Units

Mechanical Properties

Brinell Hardness 70
250
Elastic (Young's, Tensile) Modulus, GPa 120
200
Elongation at Break, % 20
15 to 17
Poisson's Ratio 0.33
0.28
Shear Modulus, GPa 44
77
Tensile Strength: Ultimate (UTS), MPa 260
890 to 1380
Tensile Strength: Yield (Proof), MPa 120
710 to 1040

Thermal Properties

Latent Heat of Fusion, J/g 190
280
Maximum Temperature: Mechanical, °C 180
850
Melting Completion (Liquidus), °C 1100
1510
Melting Onset (Solidus), °C 1070
1450
Specific Heat Capacity, J/kg-K 380
480
Thermal Conductivity, W/m-K 27
26
Thermal Expansion, µm/m-K 18
12

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 6.0
2.6
Electrical Conductivity: Equal Weight (Specific), % IACS 6.3
3.0

Otherwise Unclassified Properties

Base Metal Price, % relative 33
9.0
Density, g/cm3 8.6
7.7
Embodied Carbon, kg CO2/kg material 4.1
2.2
Embodied Energy, MJ/kg 64
31
Embodied Water, L/kg 320
120

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 43
140 to 180
Resilience: Unit (Modulus of Resilience), kJ/m3 59
1270 to 2770
Stiffness to Weight: Axial, points 7.5
14
Stiffness to Weight: Bending, points 19
25
Strength to Weight: Axial, points 8.5
32 to 50
Strength to Weight: Bending, points 11
27 to 36
Thermal Diffusivity, mm2/s 8.3
7.0
Thermal Shock Resistance, points 8.8
28 to 43

Alloy Composition

Carbon (C), % 0
0 to 0.2
Chromium (Cr), % 0
15 to 17
Copper (Cu), % 58 to 61
0
Iron (Fe), % 0 to 1.5
78.2 to 83.8
Lead (Pb), % 4.5 to 5.5
0
Manganese (Mn), % 0 to 0.5
0 to 1.0
Nickel (Ni), % 15.5 to 17
1.3 to 2.5
Phosphorus (P), % 0
0 to 0.040
Silicon (Si), % 0
0 to 1.0
Sulfur (S), % 0
0 to 0.030
Tin (Sn), % 2.5 to 3.5
0
Zinc (Zn), % 10 to 19.5
0
Residuals, % 0 to 1.0
0