MakeItFrom.com
Menu (ESC)

C97800 Nickel Silver vs. AISI 304Cu Stainless Steel

C97800 nickel silver belongs to the copper alloys classification, while AISI 304Cu stainless steel belongs to the iron alloys. There are 28 material properties with values for both materials. Properties with values for just one material (5, in this case) are not shown.

For each property being compared, the top bar is C97800 nickel silver and the bottom bar is AISI 304Cu stainless steel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 130
190
Elongation at Break, % 10
45
Poisson's Ratio 0.33
0.28
Shear Modulus, GPa 48
76
Tensile Strength: Ultimate (UTS), MPa 370
530
Tensile Strength: Yield (Proof), MPa 170
210

Thermal Properties

Latent Heat of Fusion, J/g 220
290
Maximum Temperature: Mechanical, °C 230
930
Melting Completion (Liquidus), °C 1180
1410
Melting Onset (Solidus), °C 1140
1370
Specific Heat Capacity, J/kg-K 390
480
Thermal Conductivity, W/m-K 25
13
Thermal Expansion, µm/m-K 16
16

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 4.0
2.4
Electrical Conductivity: Equal Weight (Specific), % IACS 4.1
2.8

Otherwise Unclassified Properties

Base Metal Price, % relative 40
16
Density, g/cm3 8.8
7.8
Embodied Carbon, kg CO2/kg material 5.1
3.0
Embodied Energy, MJ/kg 76
43
Embodied Water, L/kg 330
150

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 31
190
Resilience: Unit (Modulus of Resilience), kJ/m3 120
110
Stiffness to Weight: Axial, points 8.1
14
Stiffness to Weight: Bending, points 19
25
Strength to Weight: Axial, points 12
19
Strength to Weight: Bending, points 13
19
Thermal Diffusivity, mm2/s 7.3
3.5
Thermal Shock Resistance, points 13
12

Alloy Composition

Aluminum (Al), % 0 to 0.0050
0
Antimony (Sb), % 0 to 0.2
0
Carbon (C), % 0
0 to 0.030
Chromium (Cr), % 0
17 to 19
Copper (Cu), % 64 to 67
3.0 to 4.0
Iron (Fe), % 0 to 1.5
63.9 to 72
Lead (Pb), % 1.0 to 2.5
0
Manganese (Mn), % 0
0 to 2.0
Nickel (Ni), % 24 to 27
8.0 to 10
Phosphorus (P), % 0 to 0.050
0 to 0.045
Silicon (Si), % 0 to 0.15
0 to 1.0
Sulfur (S), % 0 to 0.080
0 to 0.030
Tin (Sn), % 4.0 to 5.5
0
Zinc (Zn), % 1.0 to 4.0
0
Residuals, % 0 to 0.4
0