MakeItFrom.com
Menu (ESC)

C99300 Copper vs. 6082 Aluminum

C99300 copper belongs to the copper alloys classification, while 6082 aluminum belongs to the aluminum alloys. There are 29 material properties with values for both materials. Properties with values for just one material (2, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is C99300 copper and the bottom bar is 6082 aluminum.

Metric UnitsUS Customary Units

Mechanical Properties

Brinell Hardness 200
40 to 95
Elastic (Young's, Tensile) Modulus, GPa 120
69
Elongation at Break, % 2.0
6.3 to 18
Poisson's Ratio 0.33
0.33
Shear Modulus, GPa 46
26
Tensile Strength: Ultimate (UTS), MPa 660
140 to 340
Tensile Strength: Yield (Proof), MPa 380
85 to 320

Thermal Properties

Latent Heat of Fusion, J/g 240
410
Maximum Temperature: Mechanical, °C 250
170
Melting Completion (Liquidus), °C 1080
650
Melting Onset (Solidus), °C 1070
580
Specific Heat Capacity, J/kg-K 450
900
Thermal Conductivity, W/m-K 43
160
Thermal Expansion, µm/m-K 17
23

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 9.0
42
Electrical Conductivity: Equal Weight (Specific), % IACS 9.8
140

Otherwise Unclassified Properties

Base Metal Price, % relative 35
9.5
Density, g/cm3 8.2
2.7
Embodied Carbon, kg CO2/kg material 4.5
8.3
Embodied Energy, MJ/kg 70
150
Embodied Water, L/kg 400
1170

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 11
19 to 43
Resilience: Unit (Modulus of Resilience), kJ/m3 590
52 to 710
Stiffness to Weight: Axial, points 8.3
14
Stiffness to Weight: Bending, points 20
50
Strength to Weight: Axial, points 22
14 to 35
Strength to Weight: Bending, points 20
21 to 40
Thermal Diffusivity, mm2/s 12
67
Thermal Shock Resistance, points 22
6.0 to 15

Alloy Composition

Aluminum (Al), % 10.7 to 11.5
95.2 to 98.3
Chromium (Cr), % 0
0 to 0.25
Cobalt (Co), % 1.0 to 2.0
0
Copper (Cu), % 68.6 to 74.4
0 to 0.1
Iron (Fe), % 0.4 to 1.0
0 to 0.5
Lead (Pb), % 0 to 0.020
0
Magnesium (Mg), % 0
0.6 to 1.2
Manganese (Mn), % 0
0.4 to 1.0
Nickel (Ni), % 13.5 to 16.5
0
Silicon (Si), % 0 to 0.020
0.7 to 1.3
Tin (Sn), % 0 to 0.050
0
Titanium (Ti), % 0
0 to 0.1
Zinc (Zn), % 0
0 to 0.2
Residuals, % 0
0 to 0.15