MakeItFrom.com
Menu (ESC)

C99300 Copper vs. AISI 442 Stainless Steel

C99300 copper belongs to the copper alloys classification, while AISI 442 stainless steel belongs to the iron alloys. There are 29 material properties with values for both materials. Properties with values for just one material (5, in this case) are not shown.

For each property being compared, the top bar is C99300 copper and the bottom bar is AISI 442 stainless steel.

Metric UnitsUS Customary Units

Mechanical Properties

Brinell Hardness 200
190
Elastic (Young's, Tensile) Modulus, GPa 120
200
Elongation at Break, % 2.0
23
Poisson's Ratio 0.33
0.27
Shear Modulus, GPa 46
78
Tensile Strength: Ultimate (UTS), MPa 660
580
Tensile Strength: Yield (Proof), MPa 380
310

Thermal Properties

Latent Heat of Fusion, J/g 240
290
Maximum Temperature: Mechanical, °C 250
960
Melting Completion (Liquidus), °C 1080
1430
Melting Onset (Solidus), °C 1070
1390
Specific Heat Capacity, J/kg-K 450
480
Thermal Conductivity, W/m-K 43
22
Thermal Expansion, µm/m-K 17
11

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 9.0
2.7
Electrical Conductivity: Equal Weight (Specific), % IACS 9.8
3.2

Otherwise Unclassified Properties

Base Metal Price, % relative 35
10
Density, g/cm3 8.2
7.7
Embodied Carbon, kg CO2/kg material 4.5
2.3
Embodied Energy, MJ/kg 70
32
Embodied Water, L/kg 400
130

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 11
110
Resilience: Unit (Modulus of Resilience), kJ/m3 590
250
Stiffness to Weight: Axial, points 8.3
14
Stiffness to Weight: Bending, points 20
25
Strength to Weight: Axial, points 22
21
Strength to Weight: Bending, points 20
20
Thermal Diffusivity, mm2/s 12
5.8
Thermal Shock Resistance, points 22
20

Alloy Composition

Aluminum (Al), % 10.7 to 11.5
0
Carbon (C), % 0
0 to 0.2
Chromium (Cr), % 0
18 to 23
Cobalt (Co), % 1.0 to 2.0
0
Copper (Cu), % 68.6 to 74.4
0
Iron (Fe), % 0.4 to 1.0
74.1 to 82
Lead (Pb), % 0 to 0.020
0
Manganese (Mn), % 0
0 to 1.0
Nickel (Ni), % 13.5 to 16.5
0 to 0.6
Phosphorus (P), % 0
0 to 0.040
Silicon (Si), % 0 to 0.020
0 to 1.0
Sulfur (S), % 0
0 to 0.040
Tin (Sn), % 0 to 0.050
0
Residuals, % 0 to 0.3
0