MakeItFrom.com
Menu (ESC)

C99300 Copper vs. EN 1.4418 Stainless Steel

C99300 copper belongs to the copper alloys classification, while EN 1.4418 stainless steel belongs to the iron alloys. There are 28 material properties with values for both materials. Properties with values for just one material (6, in this case) are not shown.

For each property being compared, the top bar is C99300 copper and the bottom bar is EN 1.4418 stainless steel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 120
200
Elongation at Break, % 2.0
16 to 20
Poisson's Ratio 0.33
0.28
Shear Modulus, GPa 46
77
Tensile Strength: Ultimate (UTS), MPa 660
860 to 1000
Tensile Strength: Yield (Proof), MPa 380
540 to 790

Thermal Properties

Latent Heat of Fusion, J/g 240
280
Maximum Temperature: Mechanical, °C 250
870
Melting Completion (Liquidus), °C 1080
1450
Melting Onset (Solidus), °C 1070
1400
Specific Heat Capacity, J/kg-K 450
480
Thermal Conductivity, W/m-K 43
15
Thermal Expansion, µm/m-K 17
10

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 9.0
2.2
Electrical Conductivity: Equal Weight (Specific), % IACS 9.8
2.5

Otherwise Unclassified Properties

Base Metal Price, % relative 35
13
Density, g/cm3 8.2
7.8
Embodied Carbon, kg CO2/kg material 4.5
2.8
Embodied Energy, MJ/kg 70
39
Embodied Water, L/kg 400
130

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 11
130 to 170
Resilience: Unit (Modulus of Resilience), kJ/m3 590
730 to 1590
Stiffness to Weight: Axial, points 8.3
14
Stiffness to Weight: Bending, points 20
25
Strength to Weight: Axial, points 22
31 to 36
Strength to Weight: Bending, points 20
26 to 28
Thermal Diffusivity, mm2/s 12
4.0
Thermal Shock Resistance, points 22
31 to 36

Alloy Composition

Aluminum (Al), % 10.7 to 11.5
0
Carbon (C), % 0
0 to 0.060
Chromium (Cr), % 0
15 to 17
Cobalt (Co), % 1.0 to 2.0
0
Copper (Cu), % 68.6 to 74.4
0
Iron (Fe), % 0.4 to 1.0
73.2 to 80.2
Lead (Pb), % 0 to 0.020
0
Manganese (Mn), % 0
0 to 1.5
Molybdenum (Mo), % 0
0.8 to 1.5
Nickel (Ni), % 13.5 to 16.5
4.0 to 6.0
Nitrogen (N), % 0
0 to 0.020
Phosphorus (P), % 0
0 to 0.040
Silicon (Si), % 0 to 0.020
0 to 0.7
Sulfur (S), % 0
0 to 0.015
Tin (Sn), % 0 to 0.050
0
Residuals, % 0 to 0.3
0