MakeItFrom.com
Menu (ESC)

C99300 Copper vs. EN 1.7335 Steel

C99300 copper belongs to the copper alloys classification, while EN 1.7335 steel belongs to the iron alloys. There are 29 material properties with values for both materials. Properties with values for just one material (4, in this case) are not shown.

For each property being compared, the top bar is C99300 copper and the bottom bar is EN 1.7335 steel.

Metric UnitsUS Customary Units

Mechanical Properties

Brinell Hardness 200
150 to 160
Elastic (Young's, Tensile) Modulus, GPa 120
190
Elongation at Break, % 2.0
21 to 22
Poisson's Ratio 0.33
0.29
Shear Modulus, GPa 46
73
Tensile Strength: Ultimate (UTS), MPa 660
500 to 520
Tensile Strength: Yield (Proof), MPa 380
280 to 310

Thermal Properties

Latent Heat of Fusion, J/g 240
250
Maximum Temperature: Mechanical, °C 250
430
Melting Completion (Liquidus), °C 1080
1470
Melting Onset (Solidus), °C 1070
1420
Specific Heat Capacity, J/kg-K 450
470
Thermal Conductivity, W/m-K 43
44
Thermal Expansion, µm/m-K 17
13

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 9.0
7.3
Electrical Conductivity: Equal Weight (Specific), % IACS 9.8
8.4

Otherwise Unclassified Properties

Base Metal Price, % relative 35
2.8
Density, g/cm3 8.2
7.9
Embodied Carbon, kg CO2/kg material 4.5
1.6
Embodied Energy, MJ/kg 70
21
Embodied Water, L/kg 400
52

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 11
91 to 97
Resilience: Unit (Modulus of Resilience), kJ/m3 590
210 to 260
Stiffness to Weight: Axial, points 8.3
13
Stiffness to Weight: Bending, points 20
24
Strength to Weight: Axial, points 22
18
Strength to Weight: Bending, points 20
18
Thermal Diffusivity, mm2/s 12
12
Thermal Shock Resistance, points 22
15

Alloy Composition

Aluminum (Al), % 10.7 to 11.5
0
Carbon (C), % 0
0.080 to 0.18
Chromium (Cr), % 0
0.7 to 1.2
Cobalt (Co), % 1.0 to 2.0
0
Copper (Cu), % 68.6 to 74.4
0 to 0.3
Iron (Fe), % 0.4 to 1.0
96.4 to 98.4
Lead (Pb), % 0 to 0.020
0
Manganese (Mn), % 0
0.4 to 1.0
Molybdenum (Mo), % 0
0.4 to 0.6
Nickel (Ni), % 13.5 to 16.5
0
Nitrogen (N), % 0
0 to 0.012
Phosphorus (P), % 0
0 to 0.025
Silicon (Si), % 0 to 0.020
0 to 0.35
Sulfur (S), % 0
0 to 0.010
Tin (Sn), % 0 to 0.050
0
Residuals, % 0 to 0.3
0