MakeItFrom.com
Menu (ESC)

C99500 Copper vs. 705.0 Aluminum

C99500 copper belongs to the copper alloys classification, while 705.0 aluminum belongs to the aluminum alloys. There are 26 material properties with values for both materials. Properties with values for just one material (5, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is C99500 copper and the bottom bar is 705.0 aluminum.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 120
69
Elongation at Break, % 13
8.4 to 10
Poisson's Ratio 0.34
0.33
Shear Modulus, GPa 45
26
Tensile Strength: Ultimate (UTS), MPa 540
240 to 260
Tensile Strength: Yield (Proof), MPa 310
130

Thermal Properties

Latent Heat of Fusion, J/g 240
390
Maximum Temperature: Mechanical, °C 210
180
Melting Completion (Liquidus), °C 1090
640
Melting Onset (Solidus), °C 1040
610
Specific Heat Capacity, J/kg-K 400
890
Thermal Expansion, µm/m-K 17
24

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 10
34
Electrical Conductivity: Equal Weight (Specific), % IACS 10
110

Otherwise Unclassified Properties

Base Metal Price, % relative 30
9.5
Density, g/cm3 8.7
2.8
Embodied Carbon, kg CO2/kg material 3.0
8.4
Embodied Energy, MJ/kg 47
150
Embodied Water, L/kg 300
1170

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 63
18 to 20
Resilience: Unit (Modulus of Resilience), kJ/m3 410
120 to 130
Stiffness to Weight: Axial, points 7.7
14
Stiffness to Weight: Bending, points 19
49
Strength to Weight: Axial, points 17
24 to 26
Strength to Weight: Bending, points 17
31 to 32
Thermal Shock Resistance, points 19
11

Alloy Composition

Aluminum (Al), % 0.5 to 2.0
92.3 to 98.6
Chromium (Cr), % 0
0 to 0.4
Copper (Cu), % 82.5 to 92
0 to 0.2
Iron (Fe), % 3.0 to 5.0
0 to 0.8
Lead (Pb), % 0 to 0.25
0
Magnesium (Mg), % 0
1.4 to 1.8
Manganese (Mn), % 0 to 0.5
0 to 0.6
Nickel (Ni), % 3.5 to 5.5
0
Silicon (Si), % 0.5 to 2.0
0 to 0.2
Titanium (Ti), % 0
0 to 0.25
Zinc (Zn), % 0.5 to 2.0
0 to 3.3
Residuals, % 0
0 to 0.15