MakeItFrom.com
Menu (ESC)

C99500 Copper vs. ACI-ASTM CF3M Steel

C99500 copper belongs to the copper alloys classification, while ACI-ASTM CF3M steel belongs to the iron alloys. There are 26 material properties with values for both materials. Properties with values for just one material (6, in this case) are not shown.

For each property being compared, the top bar is C99500 copper and the bottom bar is ACI-ASTM CF3M steel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 120
200
Elongation at Break, % 13
55
Poisson's Ratio 0.34
0.28
Shear Modulus, GPa 45
78
Tensile Strength: Ultimate (UTS), MPa 540
520
Tensile Strength: Yield (Proof), MPa 310
260

Thermal Properties

Latent Heat of Fusion, J/g 240
300
Maximum Temperature: Mechanical, °C 210
990
Melting Completion (Liquidus), °C 1090
1440
Melting Onset (Solidus), °C 1040
1430
Specific Heat Capacity, J/kg-K 400
470
Thermal Expansion, µm/m-K 17
15

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 10
2.0
Electrical Conductivity: Equal Weight (Specific), % IACS 10
2.3

Otherwise Unclassified Properties

Base Metal Price, % relative 30
19
Density, g/cm3 8.7
7.9
Embodied Carbon, kg CO2/kg material 3.0
3.8
Embodied Energy, MJ/kg 47
53
Embodied Water, L/kg 300
160

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 63
240
Resilience: Unit (Modulus of Resilience), kJ/m3 410
170
Stiffness to Weight: Axial, points 7.7
14
Stiffness to Weight: Bending, points 19
25
Strength to Weight: Axial, points 17
18
Strength to Weight: Bending, points 17
18
Thermal Shock Resistance, points 19
12

Alloy Composition

Aluminum (Al), % 0.5 to 2.0
0
Carbon (C), % 0
0 to 0.030
Chromium (Cr), % 0
17 to 21
Copper (Cu), % 82.5 to 92
0
Iron (Fe), % 3.0 to 5.0
59.9 to 72
Lead (Pb), % 0 to 0.25
0
Manganese (Mn), % 0 to 0.5
0 to 1.5
Molybdenum (Mo), % 0
2.0 to 3.0
Nickel (Ni), % 3.5 to 5.5
9.0 to 13
Phosphorus (P), % 0
0 to 0.040
Silicon (Si), % 0.5 to 2.0
0 to 1.5
Sulfur (S), % 0
0 to 0.040
Zinc (Zn), % 0.5 to 2.0
0
Residuals, % 0 to 0.3
0