MakeItFrom.com
Menu (ESC)

C99500 Copper vs. AISI 201LN Stainless Steel

C99500 copper belongs to the copper alloys classification, while AISI 201LN stainless steel belongs to the iron alloys. There are 26 material properties with values for both materials. Properties with values for just one material (7, in this case) are not shown.

For each property being compared, the top bar is C99500 copper and the bottom bar is AISI 201LN stainless steel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 120
200
Elongation at Break, % 13
25 to 51
Poisson's Ratio 0.34
0.28
Shear Modulus, GPa 45
77
Tensile Strength: Ultimate (UTS), MPa 540
740 to 1060
Tensile Strength: Yield (Proof), MPa 310
350 to 770

Thermal Properties

Latent Heat of Fusion, J/g 240
280
Maximum Temperature: Mechanical, °C 210
880
Melting Completion (Liquidus), °C 1090
1410
Melting Onset (Solidus), °C 1040
1370
Specific Heat Capacity, J/kg-K 400
480
Thermal Expansion, µm/m-K 17
17

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 10
2.4
Electrical Conductivity: Equal Weight (Specific), % IACS 10
2.9

Otherwise Unclassified Properties

Base Metal Price, % relative 30
12
Density, g/cm3 8.7
7.7
Embodied Carbon, kg CO2/kg material 3.0
2.6
Embodied Energy, MJ/kg 47
38
Embodied Water, L/kg 300
140

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 63
230 to 310
Resilience: Unit (Modulus of Resilience), kJ/m3 410
310 to 1520
Stiffness to Weight: Axial, points 7.7
14
Stiffness to Weight: Bending, points 19
25
Strength to Weight: Axial, points 17
27 to 38
Strength to Weight: Bending, points 17
24 to 30
Thermal Shock Resistance, points 19
16 to 23

Alloy Composition

Aluminum (Al), % 0.5 to 2.0
0
Carbon (C), % 0
0 to 0.030
Chromium (Cr), % 0
16 to 17.5
Copper (Cu), % 82.5 to 92
0 to 1.0
Iron (Fe), % 3.0 to 5.0
67.9 to 73.5
Lead (Pb), % 0 to 0.25
0
Manganese (Mn), % 0 to 0.5
6.4 to 7.5
Nickel (Ni), % 3.5 to 5.5
4.0 to 5.0
Nitrogen (N), % 0
0.1 to 0.25
Phosphorus (P), % 0
0 to 0.045
Silicon (Si), % 0.5 to 2.0
0 to 0.75
Sulfur (S), % 0
0 to 0.015
Zinc (Zn), % 0.5 to 2.0
0
Residuals, % 0 to 0.3
0