MakeItFrom.com
Menu (ESC)

C99500 Copper vs. AISI 301L Stainless Steel

C99500 copper belongs to the copper alloys classification, while AISI 301L stainless steel belongs to the iron alloys. There are 26 material properties with values for both materials. Properties with values for just one material (7, in this case) are not shown.

For each property being compared, the top bar is C99500 copper and the bottom bar is AISI 301L stainless steel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 120
200
Elongation at Break, % 13
22 to 50
Poisson's Ratio 0.34
0.28
Shear Modulus, GPa 45
77
Tensile Strength: Ultimate (UTS), MPa 540
620 to 1040
Tensile Strength: Yield (Proof), MPa 310
250 to 790

Thermal Properties

Latent Heat of Fusion, J/g 240
280
Maximum Temperature: Mechanical, °C 210
890
Melting Completion (Liquidus), °C 1090
1430
Melting Onset (Solidus), °C 1040
1390
Specific Heat Capacity, J/kg-K 400
480
Thermal Expansion, µm/m-K 17
16

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 10
2.3
Electrical Conductivity: Equal Weight (Specific), % IACS 10
2.7

Otherwise Unclassified Properties

Base Metal Price, % relative 30
13
Density, g/cm3 8.7
7.8
Embodied Carbon, kg CO2/kg material 3.0
2.7
Embodied Energy, MJ/kg 47
39
Embodied Water, L/kg 300
130

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 63
210 to 300
Resilience: Unit (Modulus of Resilience), kJ/m3 410
160 to 1580
Stiffness to Weight: Axial, points 7.7
14
Stiffness to Weight: Bending, points 19
25
Strength to Weight: Axial, points 17
22 to 37
Strength to Weight: Bending, points 17
21 to 29
Thermal Shock Resistance, points 19
14 to 24

Alloy Composition

Aluminum (Al), % 0.5 to 2.0
0
Carbon (C), % 0
0 to 0.030
Chromium (Cr), % 0
16 to 18
Copper (Cu), % 82.5 to 92
0
Iron (Fe), % 3.0 to 5.0
70.7 to 78
Lead (Pb), % 0 to 0.25
0
Manganese (Mn), % 0 to 0.5
0 to 2.0
Nickel (Ni), % 3.5 to 5.5
6.0 to 8.0
Nitrogen (N), % 0
0 to 0.2
Phosphorus (P), % 0
0 to 0.045
Silicon (Si), % 0.5 to 2.0
0 to 1.0
Sulfur (S), % 0
0 to 0.030
Zinc (Zn), % 0.5 to 2.0
0
Residuals, % 0 to 0.3
0