MakeItFrom.com
Menu (ESC)

C99500 Copper vs. AISI 384 Stainless Steel

C99500 copper belongs to the copper alloys classification, while AISI 384 stainless steel belongs to the iron alloys. There are 22 material properties with values for both materials. Properties with values for just one material (9, in this case) are not shown.

For each property being compared, the top bar is C99500 copper and the bottom bar is AISI 384 stainless steel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 120
200
Poisson's Ratio 0.34
0.28
Shear Modulus, GPa 45
76
Tensile Strength: Ultimate (UTS), MPa 540
480

Thermal Properties

Latent Heat of Fusion, J/g 240
290
Maximum Temperature: Mechanical, °C 210
910
Melting Completion (Liquidus), °C 1090
1420
Melting Onset (Solidus), °C 1040
1380
Specific Heat Capacity, J/kg-K 400
480
Thermal Expansion, µm/m-K 17
16

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 10
2.2
Electrical Conductivity: Equal Weight (Specific), % IACS 10
2.5

Otherwise Unclassified Properties

Base Metal Price, % relative 30
20
Density, g/cm3 8.7
7.9
Embodied Carbon, kg CO2/kg material 3.0
3.7
Embodied Energy, MJ/kg 47
52
Embodied Water, L/kg 300
150

Common Calculations

Stiffness to Weight: Axial, points 7.7
14
Stiffness to Weight: Bending, points 19
24
Strength to Weight: Axial, points 17
17
Strength to Weight: Bending, points 17
17
Thermal Shock Resistance, points 19
11

Alloy Composition

Aluminum (Al), % 0.5 to 2.0
0
Carbon (C), % 0
0 to 0.040
Chromium (Cr), % 0
15 to 17
Copper (Cu), % 82.5 to 92
0
Iron (Fe), % 3.0 to 5.0
60.9 to 68
Lead (Pb), % 0 to 0.25
0
Manganese (Mn), % 0 to 0.5
0 to 2.0
Nickel (Ni), % 3.5 to 5.5
17 to 19
Phosphorus (P), % 0
0 to 0.045
Silicon (Si), % 0.5 to 2.0
0 to 1.0
Sulfur (S), % 0
0 to 0.030
Zinc (Zn), % 0.5 to 2.0
0
Residuals, % 0 to 0.3
0