MakeItFrom.com
Menu (ESC)

C99500 Copper vs. AWS E240

C99500 copper belongs to the copper alloys classification, while AWS E240 belongs to the iron alloys. There are 20 material properties with values for both materials. Properties with values for just one material (9, in this case) are not shown.

For each property being compared, the top bar is C99500 copper and the bottom bar is AWS E240.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 120
200
Elongation at Break, % 13
17
Poisson's Ratio 0.34
0.28
Shear Modulus, GPa 45
77
Tensile Strength: Ultimate (UTS), MPa 540
770

Thermal Properties

Latent Heat of Fusion, J/g 240
290
Melting Completion (Liquidus), °C 1090
1390
Melting Onset (Solidus), °C 1040
1350
Specific Heat Capacity, J/kg-K 400
480
Thermal Expansion, µm/m-K 17
15

Otherwise Unclassified Properties

Base Metal Price, % relative 30
14
Density, g/cm3 8.7
7.7
Embodied Carbon, kg CO2/kg material 3.0
3.0
Embodied Energy, MJ/kg 47
42
Embodied Water, L/kg 300
160

Common Calculations

Stiffness to Weight: Axial, points 7.7
14
Stiffness to Weight: Bending, points 19
25
Strength to Weight: Axial, points 17
28
Strength to Weight: Bending, points 17
24
Thermal Shock Resistance, points 19
19

Alloy Composition

Aluminum (Al), % 0.5 to 2.0
0
Carbon (C), % 0
0 to 0.060
Chromium (Cr), % 0
17 to 19
Copper (Cu), % 82.5 to 92
0 to 0.75
Iron (Fe), % 3.0 to 5.0
58.6 to 68.4
Lead (Pb), % 0 to 0.25
0
Manganese (Mn), % 0 to 0.5
10.5 to 13.5
Molybdenum (Mo), % 0
0 to 0.75
Nickel (Ni), % 3.5 to 5.5
4.0 to 6.0
Nitrogen (N), % 0
0.1 to 0.3
Phosphorus (P), % 0
0 to 0.040
Silicon (Si), % 0.5 to 2.0
0 to 1.0
Sulfur (S), % 0
0 to 0.030
Zinc (Zn), % 0.5 to 2.0
0
Residuals, % 0 to 0.3
0