MakeItFrom.com
Menu (ESC)

C99500 Copper vs. EN 1.4310 Stainless Steel

C99500 copper belongs to the copper alloys classification, while EN 1.4310 stainless steel belongs to the iron alloys. There are 26 material properties with values for both materials. Properties with values for just one material (7, in this case) are not shown.

For each property being compared, the top bar is C99500 copper and the bottom bar is EN 1.4310 stainless steel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 120
200
Elongation at Break, % 13
14 to 45
Poisson's Ratio 0.34
0.28
Shear Modulus, GPa 45
77
Tensile Strength: Ultimate (UTS), MPa 540
730 to 900
Tensile Strength: Yield (Proof), MPa 310
260 to 570

Thermal Properties

Latent Heat of Fusion, J/g 240
290
Maximum Temperature: Mechanical, °C 210
910
Melting Completion (Liquidus), °C 1090
1420
Melting Onset (Solidus), °C 1040
1380
Specific Heat Capacity, J/kg-K 400
480
Thermal Expansion, µm/m-K 17
18

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 10
2.4
Electrical Conductivity: Equal Weight (Specific), % IACS 10
2.7

Otherwise Unclassified Properties

Base Metal Price, % relative 30
14
Density, g/cm3 8.7
7.8
Embodied Carbon, kg CO2/kg material 3.0
2.9
Embodied Energy, MJ/kg 47
42
Embodied Water, L/kg 300
140

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 63
110 to 260
Resilience: Unit (Modulus of Resilience), kJ/m3 410
170 to 830
Stiffness to Weight: Axial, points 7.7
14
Stiffness to Weight: Bending, points 19
25
Strength to Weight: Axial, points 17
26 to 32
Strength to Weight: Bending, points 17
23 to 27
Thermal Shock Resistance, points 19
15 to 18

Alloy Composition

Aluminum (Al), % 0.5 to 2.0
0
Carbon (C), % 0
0.050 to 0.15
Chromium (Cr), % 0
16 to 19
Copper (Cu), % 82.5 to 92
0
Iron (Fe), % 3.0 to 5.0
66.4 to 78
Lead (Pb), % 0 to 0.25
0
Manganese (Mn), % 0 to 0.5
0 to 2.0
Molybdenum (Mo), % 0
0 to 0.8
Nickel (Ni), % 3.5 to 5.5
6.0 to 9.5
Nitrogen (N), % 0
0 to 0.1
Phosphorus (P), % 0
0 to 0.045
Silicon (Si), % 0.5 to 2.0
0 to 2.0
Sulfur (S), % 0
0 to 0.015
Zinc (Zn), % 0.5 to 2.0
0
Residuals, % 0 to 0.3
0