MakeItFrom.com
Menu (ESC)

C99500 Copper vs. EN 1.4542 Stainless Steel

C99500 copper belongs to the copper alloys classification, while EN 1.4542 stainless steel belongs to the iron alloys. There are 26 material properties with values for both materials. Properties with values for just one material (6, in this case) are not shown.

For each property being compared, the top bar is C99500 copper and the bottom bar is EN 1.4542 stainless steel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 120
190
Elongation at Break, % 13
5.7 to 20
Poisson's Ratio 0.34
0.28
Shear Modulus, GPa 45
76
Tensile Strength: Ultimate (UTS), MPa 540
880 to 1470
Tensile Strength: Yield (Proof), MPa 310
580 to 1300

Thermal Properties

Latent Heat of Fusion, J/g 240
280
Maximum Temperature: Mechanical, °C 210
860
Melting Completion (Liquidus), °C 1090
1430
Melting Onset (Solidus), °C 1040
1380
Specific Heat Capacity, J/kg-K 400
470
Thermal Expansion, µm/m-K 17
11

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 10
2.4
Electrical Conductivity: Equal Weight (Specific), % IACS 10
2.8

Otherwise Unclassified Properties

Base Metal Price, % relative 30
13
Density, g/cm3 8.7
7.8
Embodied Carbon, kg CO2/kg material 3.0
2.7
Embodied Energy, MJ/kg 47
39
Embodied Water, L/kg 300
130

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 63
62 to 160
Resilience: Unit (Modulus of Resilience), kJ/m3 410
880 to 4360
Stiffness to Weight: Axial, points 7.7
14
Stiffness to Weight: Bending, points 19
25
Strength to Weight: Axial, points 17
31 to 52
Strength to Weight: Bending, points 17
26 to 37
Thermal Shock Resistance, points 19
29 to 49

Alloy Composition

Aluminum (Al), % 0.5 to 2.0
0
Carbon (C), % 0
0 to 0.070
Chromium (Cr), % 0
15 to 17
Copper (Cu), % 82.5 to 92
3.0 to 5.0
Iron (Fe), % 3.0 to 5.0
69.6 to 79
Lead (Pb), % 0 to 0.25
0
Manganese (Mn), % 0 to 0.5
0 to 1.5
Molybdenum (Mo), % 0
0 to 0.6
Nickel (Ni), % 3.5 to 5.5
3.0 to 5.0
Niobium (Nb), % 0
0 to 0.45
Phosphorus (P), % 0
0 to 0.040
Silicon (Si), % 0.5 to 2.0
0 to 0.7
Sulfur (S), % 0
0 to 0.015
Zinc (Zn), % 0.5 to 2.0
0
Residuals, % 0 to 0.3
0