MakeItFrom.com
Menu (ESC)

C99500 Copper vs. EN 1.5521 Steel

C99500 copper belongs to the copper alloys classification, while EN 1.5521 steel belongs to the iron alloys. There are 26 material properties with values for both materials. Properties with values for just one material (6, in this case) are not shown.

For each property being compared, the top bar is C99500 copper and the bottom bar is EN 1.5521 steel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 120
190
Elongation at Break, % 13
11 to 21
Poisson's Ratio 0.34
0.29
Shear Modulus, GPa 45
73
Tensile Strength: Ultimate (UTS), MPa 540
430 to 1390
Tensile Strength: Yield (Proof), MPa 310
300 to 490

Thermal Properties

Latent Heat of Fusion, J/g 240
250
Maximum Temperature: Mechanical, °C 210
400
Melting Completion (Liquidus), °C 1090
1460
Melting Onset (Solidus), °C 1040
1420
Specific Heat Capacity, J/kg-K 400
470
Thermal Expansion, µm/m-K 17
13

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 10
7.1
Electrical Conductivity: Equal Weight (Specific), % IACS 10
8.1

Otherwise Unclassified Properties

Base Metal Price, % relative 30
1.9
Density, g/cm3 8.7
7.8
Embodied Carbon, kg CO2/kg material 3.0
1.4
Embodied Energy, MJ/kg 47
19
Embodied Water, L/kg 300
47

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 63
44 to 230
Resilience: Unit (Modulus of Resilience), kJ/m3 410
250 to 630
Stiffness to Weight: Axial, points 7.7
13
Stiffness to Weight: Bending, points 19
24
Strength to Weight: Axial, points 17
15 to 49
Strength to Weight: Bending, points 17
16 to 35
Thermal Shock Resistance, points 19
13 to 41

Alloy Composition

Aluminum (Al), % 0.5 to 2.0
0
Boron (B), % 0
0.00080 to 0.0050
Carbon (C), % 0
0.16 to 0.2
Copper (Cu), % 82.5 to 92
0 to 0.25
Iron (Fe), % 3.0 to 5.0
98 to 98.9
Lead (Pb), % 0 to 0.25
0
Manganese (Mn), % 0 to 0.5
0.9 to 1.2
Nickel (Ni), % 3.5 to 5.5
0
Phosphorus (P), % 0
0 to 0.025
Silicon (Si), % 0.5 to 2.0
0 to 0.3
Sulfur (S), % 0
0 to 0.025
Zinc (Zn), % 0.5 to 2.0
0
Residuals, % 0 to 0.3
0