MakeItFrom.com
Menu (ESC)

C99500 Copper vs. EN AC-45300 Aluminum

C99500 copper belongs to the copper alloys classification, while EN AC-45300 aluminum belongs to the aluminum alloys. There are 26 material properties with values for both materials. Properties with values for just one material (4, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is C99500 copper and the bottom bar is EN AC-45300 aluminum.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 120
71
Elongation at Break, % 13
1.0 to 2.8
Poisson's Ratio 0.34
0.33
Shear Modulus, GPa 45
27
Tensile Strength: Ultimate (UTS), MPa 540
220 to 290
Tensile Strength: Yield (Proof), MPa 310
150 to 230

Thermal Properties

Latent Heat of Fusion, J/g 240
470
Maximum Temperature: Mechanical, °C 210
170
Melting Completion (Liquidus), °C 1090
630
Melting Onset (Solidus), °C 1040
590
Specific Heat Capacity, J/kg-K 400
890
Thermal Expansion, µm/m-K 17
22

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 10
36
Electrical Conductivity: Equal Weight (Specific), % IACS 10
120

Otherwise Unclassified Properties

Base Metal Price, % relative 30
9.5
Density, g/cm3 8.7
2.7
Embodied Carbon, kg CO2/kg material 3.0
8.0
Embodied Energy, MJ/kg 47
150
Embodied Water, L/kg 300
1120

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 63
2.7 to 5.6
Resilience: Unit (Modulus of Resilience), kJ/m3 410
160 to 390
Stiffness to Weight: Axial, points 7.7
14
Stiffness to Weight: Bending, points 19
50
Strength to Weight: Axial, points 17
23 to 29
Strength to Weight: Bending, points 17
30 to 35
Thermal Shock Resistance, points 19
10 to 13

Alloy Composition

Aluminum (Al), % 0.5 to 2.0
90.2 to 94.2
Copper (Cu), % 82.5 to 92
1.0 to 1.5
Iron (Fe), % 3.0 to 5.0
0 to 0.65
Lead (Pb), % 0 to 0.25
0 to 0.15
Magnesium (Mg), % 0
0.35 to 0.65
Manganese (Mn), % 0 to 0.5
0 to 0.55
Nickel (Ni), % 3.5 to 5.5
0 to 0.25
Silicon (Si), % 0.5 to 2.0
4.5 to 5.5
Tin (Sn), % 0
0 to 0.050
Titanium (Ti), % 0
0 to 0.25
Zinc (Zn), % 0.5 to 2.0
0 to 0.15
Residuals, % 0
0 to 0.15