MakeItFrom.com
Menu (ESC)

C99500 Copper vs. S45503 Stainless Steel

C99500 copper belongs to the copper alloys classification, while S45503 stainless steel belongs to the iron alloys. There are 23 material properties with values for both materials. Properties with values for just one material (10, in this case) are not shown.

For each property being compared, the top bar is C99500 copper and the bottom bar is S45503 stainless steel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 120
190
Elongation at Break, % 13
4.6 to 6.8
Poisson's Ratio 0.34
0.28
Shear Modulus, GPa 45
75
Tensile Strength: Ultimate (UTS), MPa 540
1610 to 1850
Tensile Strength: Yield (Proof), MPa 310
1430 to 1700

Thermal Properties

Latent Heat of Fusion, J/g 240
270
Maximum Temperature: Mechanical, °C 210
760
Melting Completion (Liquidus), °C 1090
1440
Melting Onset (Solidus), °C 1040
1400
Specific Heat Capacity, J/kg-K 400
470
Thermal Expansion, µm/m-K 17
11

Otherwise Unclassified Properties

Base Metal Price, % relative 30
15
Density, g/cm3 8.7
7.9
Embodied Carbon, kg CO2/kg material 3.0
3.4
Embodied Energy, MJ/kg 47
48
Embodied Water, L/kg 300
120

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 63
82 to 110
Stiffness to Weight: Axial, points 7.7
14
Stiffness to Weight: Bending, points 19
24
Strength to Weight: Axial, points 17
57 to 65
Strength to Weight: Bending, points 17
39 to 43
Thermal Shock Resistance, points 19
56 to 64

Alloy Composition

Aluminum (Al), % 0.5 to 2.0
0
Carbon (C), % 0
0 to 0.010
Chromium (Cr), % 0
11 to 12.5
Copper (Cu), % 82.5 to 92
1.5 to 2.5
Iron (Fe), % 3.0 to 5.0
72.4 to 78.9
Lead (Pb), % 0 to 0.25
0
Manganese (Mn), % 0 to 0.5
0 to 0.5
Molybdenum (Mo), % 0
0 to 0.5
Nickel (Ni), % 3.5 to 5.5
7.5 to 9.5
Niobium (Nb), % 0
0.1 to 0.5
Phosphorus (P), % 0
0 to 0.010
Silicon (Si), % 0.5 to 2.0
0 to 0.2
Sulfur (S), % 0
0 to 0.010
Titanium (Ti), % 0
1.0 to 1.4
Zinc (Zn), % 0.5 to 2.0
0
Residuals, % 0 to 0.3
0