MakeItFrom.com
Menu (ESC)

K93050 Alloy vs. 4015 Aluminum

K93050 alloy belongs to the iron alloys classification, while 4015 aluminum belongs to the aluminum alloys. There are 19 material properties with values for both materials. Properties with values for just one material (12, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is K93050 alloy and the bottom bar is 4015 aluminum.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 190
70
Poisson's Ratio 0.3
0.33
Shear Modulus, GPa 72
26
Tensile Strength: Ultimate (UTS), MPa 500 to 680
130 to 220

Thermal Properties

Latent Heat of Fusion, J/g 270
420
Melting Completion (Liquidus), °C 1430
640
Melting Onset (Solidus), °C 1380
600
Specific Heat Capacity, J/kg-K 460
900
Thermal Expansion, µm/m-K 12
23

Otherwise Unclassified Properties

Base Metal Price, % relative 26
9.5
Density, g/cm3 8.2
2.7
Embodied Carbon, kg CO2/kg material 4.7
8.1
Embodied Energy, MJ/kg 65
150
Embodied Water, L/kg 120
1160

Common Calculations

Stiffness to Weight: Axial, points 13
14
Stiffness to Weight: Bending, points 23
50
Strength to Weight: Axial, points 17 to 23
13 to 22
Strength to Weight: Bending, points 17 to 21
21 to 30
Thermal Shock Resistance, points 16 to 21
5.7 to 9.7

Alloy Composition

Aluminum (Al), % 0
94.9 to 97.9
Carbon (C), % 0 to 0.15
0
Chromium (Cr), % 0 to 0.25
0
Cobalt (Co), % 0 to 0.5
0
Copper (Cu), % 0
0 to 0.2
Iron (Fe), % 61.4 to 63.9
0 to 0.7
Magnesium (Mg), % 0
0.1 to 0.5
Manganese (Mn), % 0 to 1.0
0.6 to 1.2
Nickel (Ni), % 36
0
Phosphorus (P), % 0 to 0.020
0
Selenium (Se), % 0.15 to 0.3
0
Silicon (Si), % 0 to 0.35
1.4 to 2.2
Sulfur (S), % 0 to 0.020
0
Zinc (Zn), % 0
0 to 0.2
Residuals, % 0
0 to 0.15

Comparable Variants