MakeItFrom.com
Menu (ESC)

K93050 Alloy vs. EN 1.4945 Stainless Steel

Both K93050 alloy and EN 1.4945 stainless steel are iron alloys. They have 79% of their average alloy composition in common. There are 19 material properties with values for both materials. Properties with values for just one material (14, in this case) are not shown.

For each property being compared, the top bar is K93050 alloy and the bottom bar is EN 1.4945 stainless steel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 190
200
Poisson's Ratio 0.3
0.28
Shear Modulus, GPa 72
77
Tensile Strength: Ultimate (UTS), MPa 500 to 680
640 to 740

Thermal Properties

Latent Heat of Fusion, J/g 270
290
Melting Completion (Liquidus), °C 1430
1490
Melting Onset (Solidus), °C 1380
1440
Specific Heat Capacity, J/kg-K 460
470
Thermal Expansion, µm/m-K 12
17

Otherwise Unclassified Properties

Base Metal Price, % relative 26
30
Density, g/cm3 8.2
8.1
Embodied Carbon, kg CO2/kg material 4.7
5.0
Embodied Energy, MJ/kg 65
73
Embodied Water, L/kg 120
150

Common Calculations

Stiffness to Weight: Axial, points 13
14
Stiffness to Weight: Bending, points 23
24
Strength to Weight: Axial, points 17 to 23
22 to 25
Strength to Weight: Bending, points 17 to 21
20 to 22
Thermal Shock Resistance, points 16 to 21
14 to 16

Alloy Composition

Carbon (C), % 0 to 0.15
0.040 to 0.1
Chromium (Cr), % 0 to 0.25
15.5 to 17.5
Cobalt (Co), % 0 to 0.5
0
Iron (Fe), % 61.4 to 63.9
57.9 to 65.7
Manganese (Mn), % 0 to 1.0
0 to 1.5
Nickel (Ni), % 36
15.5 to 17.5
Niobium (Nb), % 0
0.4 to 1.2
Nitrogen (N), % 0
0.060 to 0.14
Phosphorus (P), % 0 to 0.020
0 to 0.035
Selenium (Se), % 0.15 to 0.3
0
Silicon (Si), % 0 to 0.35
0.3 to 0.6
Sulfur (S), % 0 to 0.020
0 to 0.015
Tungsten (W), % 0
2.5 to 3.5