MakeItFrom.com
Menu (ESC)

K93050 Alloy vs. EN 1.7131 Steel

Both K93050 alloy and EN 1.7131 steel are iron alloys. They have 64% of their average alloy composition in common. There are 19 material properties with values for both materials. Properties with values for just one material (6, in this case) are not shown.

For each property being compared, the top bar is K93050 alloy and the bottom bar is EN 1.7131 steel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 190
190
Poisson's Ratio 0.3
0.29
Shear Modulus, GPa 72
73
Tensile Strength: Ultimate (UTS), MPa 500 to 680
470 to 1390

Thermal Properties

Latent Heat of Fusion, J/g 270
250
Melting Completion (Liquidus), °C 1430
1460
Melting Onset (Solidus), °C 1380
1420
Specific Heat Capacity, J/kg-K 460
470
Thermal Expansion, µm/m-K 12
13

Otherwise Unclassified Properties

Base Metal Price, % relative 26
2.2
Density, g/cm3 8.2
7.8
Embodied Carbon, kg CO2/kg material 4.7
1.4
Embodied Energy, MJ/kg 65
19
Embodied Water, L/kg 120
51

Common Calculations

Stiffness to Weight: Axial, points 13
13
Stiffness to Weight: Bending, points 23
24
Strength to Weight: Axial, points 17 to 23
17 to 49
Strength to Weight: Bending, points 17 to 21
17 to 35
Thermal Shock Resistance, points 16 to 21
14 to 41

Alloy Composition

Carbon (C), % 0 to 0.15
0.14 to 0.19
Chromium (Cr), % 0 to 0.25
0.8 to 1.1
Cobalt (Co), % 0 to 0.5
0
Copper (Cu), % 0
0 to 0.25
Iron (Fe), % 61.4 to 63.9
96.8 to 98.1
Manganese (Mn), % 0 to 1.0
1.0 to 1.3
Nickel (Ni), % 36
0
Phosphorus (P), % 0 to 0.020
0 to 0.025
Selenium (Se), % 0.15 to 0.3
0
Silicon (Si), % 0 to 0.35
0 to 0.3
Sulfur (S), % 0 to 0.020
0 to 0.025