MakeItFrom.com
Menu (ESC)

K93050 Alloy vs. C42600 Brass

K93050 alloy belongs to the iron alloys classification, while C42600 brass belongs to the copper alloys. There are 19 material properties with values for both materials. Properties with values for just one material (10, in this case) are not shown.

For each property being compared, the top bar is K93050 alloy and the bottom bar is C42600 brass.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 190
110
Poisson's Ratio 0.3
0.33
Shear Modulus, GPa 72
42
Tensile Strength: Ultimate (UTS), MPa 500 to 680
410 to 830

Thermal Properties

Latent Heat of Fusion, J/g 270
200
Melting Completion (Liquidus), °C 1430
1030
Melting Onset (Solidus), °C 1380
1010
Specific Heat Capacity, J/kg-K 460
380
Thermal Expansion, µm/m-K 12
18

Otherwise Unclassified Properties

Base Metal Price, % relative 26
31
Density, g/cm3 8.2
8.7
Embodied Carbon, kg CO2/kg material 4.7
2.9
Embodied Energy, MJ/kg 65
48
Embodied Water, L/kg 120
340

Common Calculations

Stiffness to Weight: Axial, points 13
7.1
Stiffness to Weight: Bending, points 23
18
Strength to Weight: Axial, points 17 to 23
13 to 27
Strength to Weight: Bending, points 17 to 21
14 to 23
Thermal Shock Resistance, points 16 to 21
15 to 29

Alloy Composition

Carbon (C), % 0 to 0.15
0
Chromium (Cr), % 0 to 0.25
0
Cobalt (Co), % 0 to 0.5
0
Copper (Cu), % 0
87 to 90
Iron (Fe), % 61.4 to 63.9
0.050 to 0.2
Lead (Pb), % 0
0 to 0.050
Manganese (Mn), % 0 to 1.0
0
Nickel (Ni), % 36
0.050 to 0.2
Phosphorus (P), % 0 to 0.020
0.020 to 0.050
Selenium (Se), % 0.15 to 0.3
0
Silicon (Si), % 0 to 0.35
0
Sulfur (S), % 0 to 0.020
0
Tin (Sn), % 0
2.5 to 4.0
Zinc (Zn), % 0
5.3 to 10.4
Residuals, % 0
0 to 0.2