MakeItFrom.com
Menu (ESC)

K93500 Alloy vs. AISI 446 Stainless Steel

Both K93500 alloy and AISI 446 stainless steel are iron alloys. They have 63% of their average alloy composition in common. There are 19 material properties with values for both materials. Properties with values for just one material (17, in this case) are not shown.

For each property being compared, the top bar is K93500 alloy and the bottom bar is AISI 446 stainless steel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 190
200
Poisson's Ratio 0.3
0.27
Shear Modulus, GPa 72
79
Tensile Strength: Ultimate (UTS), MPa 490 to 810
570

Thermal Properties

Latent Heat of Fusion, J/g 270
290
Melting Completion (Liquidus), °C 1430
1510
Melting Onset (Solidus), °C 1380
1430
Specific Heat Capacity, J/kg-K 460
490
Thermal Expansion, µm/m-K 12
11

Otherwise Unclassified Properties

Base Metal Price, % relative 30
12
Density, g/cm3 8.2
7.7
Embodied Carbon, kg CO2/kg material 4.7
2.4
Embodied Energy, MJ/kg 65
35
Embodied Water, L/kg 130
150

Common Calculations

Stiffness to Weight: Axial, points 13
15
Stiffness to Weight: Bending, points 23
26
Strength to Weight: Axial, points 17 to 27
21
Strength to Weight: Bending, points 17 to 23
20
Thermal Shock Resistance, points 15 to 25
19

Alloy Composition

Aluminum (Al), % 0 to 0.1
0
Carbon (C), % 0 to 0.050
0 to 0.2
Chromium (Cr), % 0 to 0.25
23 to 27
Cobalt (Co), % 5.0
0
Iron (Fe), % 61.4 to 63
69.2 to 77
Magnesium (Mg), % 0 to 0.1
0
Manganese (Mn), % 0 to 0.6
0 to 1.5
Nickel (Ni), % 32
0 to 0.75
Nitrogen (N), % 0
0 to 0.25
Phosphorus (P), % 0 to 0.015
0 to 0.040
Silicon (Si), % 0 to 0.25
0 to 1.0
Sulfur (S), % 0 to 0.015
0 to 0.030
Titanium (Ti), % 0 to 0.1
0
Zirconium (Zr), % 0 to 0.1
0