MakeItFrom.com
Menu (ESC)

K93500 Alloy vs. AWS E316L

Both K93500 alloy and AWS E316L are iron alloys. They have 75% of their average alloy composition in common. There are 19 material properties with values for both materials. Properties with values for just one material (6, in this case) are not shown.

For each property being compared, the top bar is K93500 alloy and the bottom bar is AWS E316L.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 190
200
Poisson's Ratio 0.3
0.28
Shear Modulus, GPa 72
78
Tensile Strength: Ultimate (UTS), MPa 490 to 810
550

Thermal Properties

Latent Heat of Fusion, J/g 270
290
Melting Completion (Liquidus), °C 1430
1440
Melting Onset (Solidus), °C 1380
1390
Specific Heat Capacity, J/kg-K 460
470
Thermal Expansion, µm/m-K 12
14

Otherwise Unclassified Properties

Base Metal Price, % relative 30
20
Density, g/cm3 8.2
7.9
Embodied Carbon, kg CO2/kg material 4.7
4.0
Embodied Energy, MJ/kg 65
55
Embodied Water, L/kg 130
160

Common Calculations

Stiffness to Weight: Axial, points 13
14
Stiffness to Weight: Bending, points 23
25
Strength to Weight: Axial, points 17 to 27
19
Strength to Weight: Bending, points 17 to 23
19
Thermal Shock Resistance, points 15 to 25
14

Alloy Composition

Aluminum (Al), % 0 to 0.1
0
Carbon (C), % 0 to 0.050
0 to 0.040
Chromium (Cr), % 0 to 0.25
17 to 20
Cobalt (Co), % 5.0
0
Copper (Cu), % 0
0 to 0.75
Iron (Fe), % 61.4 to 63
58.6 to 69.5
Magnesium (Mg), % 0 to 0.1
0
Manganese (Mn), % 0 to 0.6
0.5 to 2.5
Molybdenum (Mo), % 0
2.0 to 3.0
Nickel (Ni), % 32
11 to 14
Phosphorus (P), % 0 to 0.015
0 to 0.040
Silicon (Si), % 0 to 0.25
0 to 1.0
Sulfur (S), % 0 to 0.015
0 to 0.030
Titanium (Ti), % 0 to 0.1
0
Zirconium (Zr), % 0 to 0.1
0