MakeItFrom.com
Menu (ESC)

K93500 Alloy vs. SAE-AISI 1010 Steel

Both K93500 alloy and SAE-AISI 1010 steel are iron alloys. They have 63% of their average alloy composition in common. There are 19 material properties with values for both materials. Properties with values for just one material (13, in this case) are not shown.

For each property being compared, the top bar is K93500 alloy and the bottom bar is SAE-AISI 1010 steel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 190
190
Poisson's Ratio 0.3
0.29
Shear Modulus, GPa 72
73
Tensile Strength: Ultimate (UTS), MPa 490 to 810
350 to 400

Thermal Properties

Latent Heat of Fusion, J/g 270
250
Melting Completion (Liquidus), °C 1430
1470
Melting Onset (Solidus), °C 1380
1430
Specific Heat Capacity, J/kg-K 460
470
Thermal Expansion, µm/m-K 12
12

Otherwise Unclassified Properties

Base Metal Price, % relative 30
1.8
Density, g/cm3 8.2
7.9
Embodied Carbon, kg CO2/kg material 4.7
1.4
Embodied Energy, MJ/kg 65
18
Embodied Water, L/kg 130
45

Common Calculations

Stiffness to Weight: Axial, points 13
13
Stiffness to Weight: Bending, points 23
24
Strength to Weight: Axial, points 17 to 27
12 to 14
Strength to Weight: Bending, points 17 to 23
14 to 15
Thermal Shock Resistance, points 15 to 25
11 to 13

Alloy Composition

Aluminum (Al), % 0 to 0.1
0
Carbon (C), % 0 to 0.050
0.080 to 0.13
Chromium (Cr), % 0 to 0.25
0
Cobalt (Co), % 5.0
0
Iron (Fe), % 61.4 to 63
99.18 to 99.62
Magnesium (Mg), % 0 to 0.1
0
Manganese (Mn), % 0 to 0.6
0.3 to 0.6
Nickel (Ni), % 32
0
Phosphorus (P), % 0 to 0.015
0 to 0.040
Silicon (Si), % 0 to 0.25
0
Sulfur (S), % 0 to 0.015
0 to 0.050
Titanium (Ti), % 0 to 0.1
0
Zirconium (Zr), % 0 to 0.1
0