MakeItFrom.com
Menu (ESC)

K93500 Alloy vs. C52400 Bronze

K93500 alloy belongs to the iron alloys classification, while C52400 bronze belongs to the copper alloys. There are 19 material properties with values for both materials. Properties with values for just one material (7, in this case) are not shown.

For each property being compared, the top bar is K93500 alloy and the bottom bar is C52400 bronze.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 190
110
Poisson's Ratio 0.3
0.34
Shear Modulus, GPa 72
41
Tensile Strength: Ultimate (UTS), MPa 490 to 810
450 to 880

Thermal Properties

Latent Heat of Fusion, J/g 270
190
Melting Completion (Liquidus), °C 1430
1000
Melting Onset (Solidus), °C 1380
840
Specific Heat Capacity, J/kg-K 460
370
Thermal Expansion, µm/m-K 12
18

Otherwise Unclassified Properties

Base Metal Price, % relative 30
35
Density, g/cm3 8.2
8.8
Embodied Carbon, kg CO2/kg material 4.7
3.6
Embodied Energy, MJ/kg 65
58
Embodied Water, L/kg 130
390

Common Calculations

Stiffness to Weight: Axial, points 13
6.9
Stiffness to Weight: Bending, points 23
18
Strength to Weight: Axial, points 17 to 27
14 to 28
Strength to Weight: Bending, points 17 to 23
15 to 23
Thermal Shock Resistance, points 15 to 25
17 to 32

Alloy Composition

Aluminum (Al), % 0 to 0.1
0
Carbon (C), % 0 to 0.050
0
Chromium (Cr), % 0 to 0.25
0
Cobalt (Co), % 5.0
0
Copper (Cu), % 0
87.8 to 91
Iron (Fe), % 61.4 to 63
0 to 0.1
Lead (Pb), % 0
0 to 0.050
Magnesium (Mg), % 0 to 0.1
0
Manganese (Mn), % 0 to 0.6
0
Nickel (Ni), % 32
0
Phosphorus (P), % 0 to 0.015
0.030 to 0.35
Silicon (Si), % 0 to 0.25
0
Sulfur (S), % 0 to 0.015
0
Tin (Sn), % 0
9.0 to 11
Titanium (Ti), % 0 to 0.1
0
Zinc (Zn), % 0
0 to 0.2
Zirconium (Zr), % 0 to 0.1
0
Residuals, % 0
0 to 0.5