MakeItFrom.com
Menu (ESC)

K93500 Alloy vs. C66700 Brass

K93500 alloy belongs to the iron alloys classification, while C66700 brass belongs to the copper alloys. There are 19 material properties with values for both materials. Properties with values for just one material (12, in this case) are not shown.

For each property being compared, the top bar is K93500 alloy and the bottom bar is C66700 brass.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 190
110
Poisson's Ratio 0.3
0.31
Shear Modulus, GPa 72
41
Tensile Strength: Ultimate (UTS), MPa 490 to 810
340 to 690

Thermal Properties

Latent Heat of Fusion, J/g 270
180
Melting Completion (Liquidus), °C 1430
1090
Melting Onset (Solidus), °C 1380
1050
Specific Heat Capacity, J/kg-K 460
390
Thermal Expansion, µm/m-K 12
20

Otherwise Unclassified Properties

Base Metal Price, % relative 30
25
Density, g/cm3 8.2
8.2
Embodied Carbon, kg CO2/kg material 4.7
2.7
Embodied Energy, MJ/kg 65
45
Embodied Water, L/kg 130
320

Common Calculations

Stiffness to Weight: Axial, points 13
7.3
Stiffness to Weight: Bending, points 23
19
Strength to Weight: Axial, points 17 to 27
11 to 23
Strength to Weight: Bending, points 17 to 23
13 to 21
Thermal Shock Resistance, points 15 to 25
11 to 23

Alloy Composition

Aluminum (Al), % 0 to 0.1
0
Carbon (C), % 0 to 0.050
0
Chromium (Cr), % 0 to 0.25
0
Cobalt (Co), % 5.0
0
Copper (Cu), % 0
68.5 to 71.5
Iron (Fe), % 61.4 to 63
0 to 0.1
Lead (Pb), % 0
0 to 0.070
Magnesium (Mg), % 0 to 0.1
0
Manganese (Mn), % 0 to 0.6
0.8 to 1.5
Nickel (Ni), % 32
0
Phosphorus (P), % 0 to 0.015
0
Silicon (Si), % 0 to 0.25
0
Sulfur (S), % 0 to 0.015
0
Titanium (Ti), % 0 to 0.1
0
Zinc (Zn), % 0
26.3 to 30.7
Zirconium (Zr), % 0 to 0.1
0
Residuals, % 0
0 to 0.5