MakeItFrom.com
Menu (ESC)

K93603 Alloy vs. CC481K Bronze

K93603 alloy belongs to the iron alloys classification, while CC481K bronze belongs to the copper alloys. There are 19 material properties with values for both materials. Properties with values for just one material (10, in this case) are not shown.

For each property being compared, the top bar is K93603 alloy and the bottom bar is CC481K bronze.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 190
110
Poisson's Ratio 0.3
0.34
Shear Modulus, GPa 72
40
Tensile Strength: Ultimate (UTS), MPa 490 to 810
350

Thermal Properties

Latent Heat of Fusion, J/g 270
190
Melting Completion (Liquidus), °C 1430
1000
Melting Onset (Solidus), °C 1380
880
Specific Heat Capacity, J/kg-K 460
370
Thermal Expansion, µm/m-K 12
18

Otherwise Unclassified Properties

Base Metal Price, % relative 25
35
Density, g/cm3 8.2
8.7
Embodied Carbon, kg CO2/kg material 4.8
3.7
Embodied Energy, MJ/kg 66
60
Embodied Water, L/kg 120
390

Common Calculations

Stiffness to Weight: Axial, points 13
6.9
Stiffness to Weight: Bending, points 23
18
Strength to Weight: Axial, points 17 to 27
11
Strength to Weight: Bending, points 17 to 24
13
Thermal Shock Resistance, points 15 to 25
13

Alloy Composition

Aluminum (Al), % 0 to 0.1
0 to 0.010
Antimony (Sb), % 0
0 to 0.050
Carbon (C), % 0 to 0.050
0
Chromium (Cr), % 0 to 0.25
0
Cobalt (Co), % 0 to 0.5
0
Copper (Cu), % 0
87 to 89.5
Iron (Fe), % 61.8 to 64
0 to 0.1
Lead (Pb), % 0
0 to 0.25
Magnesium (Mg), % 0 to 0.1
0
Manganese (Mn), % 0 to 0.6
0 to 0.050
Nickel (Ni), % 36
0 to 0.1
Phosphorus (P), % 0 to 0.015
0 to 1.0
Silicon (Si), % 0 to 0.4
0 to 0.010
Sulfur (S), % 0 to 0.015
0 to 0.050
Tin (Sn), % 0
10 to 11.5
Titanium (Ti), % 0 to 0.1
0
Zinc (Zn), % 0
0 to 0.5
Zirconium (Zr), % 0 to 0.1
0