MakeItFrom.com
Menu (ESC)

N06002 Nickel vs. 2219 Aluminum

N06002 nickel belongs to the nickel alloys classification, while 2219 aluminum belongs to the aluminum alloys. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is N06002 nickel and the bottom bar is 2219 aluminum.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 210
72
Elongation at Break, % 41
2.2 to 20
Fatigue Strength, MPa 250
90 to 130
Poisson's Ratio 0.28
0.33
Shear Modulus, GPa 81
27
Shear Strength, MPa 520
110 to 280
Tensile Strength: Ultimate (UTS), MPa 760
180 to 480
Tensile Strength: Yield (Proof), MPa 310
88 to 390

Thermal Properties

Latent Heat of Fusion, J/g 320
390
Maximum Temperature: Mechanical, °C 990
230
Melting Completion (Liquidus), °C 1360
640
Melting Onset (Solidus), °C 1260
540
Specific Heat Capacity, J/kg-K 450
870
Thermal Conductivity, W/m-K 9.9
110 to 170
Thermal Expansion, µm/m-K 14
22

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 1.5
28 to 44
Electrical Conductivity: Equal Weight (Specific), % IACS 1.6
81 to 130

Otherwise Unclassified Properties

Base Metal Price, % relative 55
11
Density, g/cm3 8.5
3.1
Embodied Carbon, kg CO2/kg material 9.3
8.2
Embodied Energy, MJ/kg 130
150
Embodied Water, L/kg 270
1130

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 250
9.6 to 60
Resilience: Unit (Modulus of Resilience), kJ/m3 230
54 to 1060
Stiffness to Weight: Axial, points 14
13
Stiffness to Weight: Bending, points 23
44
Strength to Weight: Axial, points 25
16 to 43
Strength to Weight: Bending, points 22
23 to 44
Thermal Diffusivity, mm2/s 2.6
42 to 63
Thermal Shock Resistance, points 19
8.2 to 22

Alloy Composition

Aluminum (Al), % 0
91.5 to 93.8
Carbon (C), % 0.050 to 0.15
0
Chromium (Cr), % 20.5 to 23
0
Cobalt (Co), % 0.5 to 2.5
0
Copper (Cu), % 0
5.8 to 6.8
Iron (Fe), % 17 to 20
0 to 0.3
Magnesium (Mg), % 0
0 to 0.020
Manganese (Mn), % 0 to 1.0
0.2 to 0.4
Molybdenum (Mo), % 8.0 to 10
0
Nickel (Ni), % 42.3 to 54
0
Phosphorus (P), % 0 to 0.040
0
Silicon (Si), % 0 to 1.0
0 to 0.2
Sulfur (S), % 0 to 0.030
0
Titanium (Ti), % 0
0.020 to 0.1
Tungsten (W), % 0.2 to 1.0
0
Vanadium (V), % 0
0.050 to 0.15
Zinc (Zn), % 0
0 to 0.1
Zirconium (Zr), % 0
0.1 to 0.25
Residuals, % 0
0 to 0.15