MakeItFrom.com
Menu (ESC)

N06002 Nickel vs. 3203 Aluminum

N06002 nickel belongs to the nickel alloys classification, while 3203 aluminum belongs to the aluminum alloys. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is N06002 nickel and the bottom bar is 3203 aluminum.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 210
70
Elongation at Break, % 41
4.5 to 29
Fatigue Strength, MPa 250
46 to 92
Poisson's Ratio 0.28
0.33
Shear Modulus, GPa 81
26
Shear Strength, MPa 520
72 to 120
Tensile Strength: Ultimate (UTS), MPa 760
110 to 200
Tensile Strength: Yield (Proof), MPa 310
39 to 190

Thermal Properties

Latent Heat of Fusion, J/g 320
400
Maximum Temperature: Mechanical, °C 990
180
Melting Completion (Liquidus), °C 1360
650
Melting Onset (Solidus), °C 1260
620
Specific Heat Capacity, J/kg-K 450
900
Thermal Conductivity, W/m-K 9.9
170
Thermal Expansion, µm/m-K 14
23

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 1.5
43
Electrical Conductivity: Equal Weight (Specific), % IACS 1.6
140

Otherwise Unclassified Properties

Base Metal Price, % relative 55
9.0
Density, g/cm3 8.5
2.8
Embodied Carbon, kg CO2/kg material 9.3
8.1
Embodied Energy, MJ/kg 130
150
Embodied Water, L/kg 270
1180

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 250
8.0 to 25
Resilience: Unit (Modulus of Resilience), kJ/m3 230
11 to 250
Stiffness to Weight: Axial, points 14
14
Stiffness to Weight: Bending, points 23
50
Strength to Weight: Axial, points 25
11 to 20
Strength to Weight: Bending, points 22
19 to 28
Thermal Diffusivity, mm2/s 2.6
70
Thermal Shock Resistance, points 19
4.9 to 8.8

Alloy Composition

Aluminum (Al), % 0
96.9 to 99
Carbon (C), % 0.050 to 0.15
0
Chromium (Cr), % 20.5 to 23
0
Cobalt (Co), % 0.5 to 2.5
0
Copper (Cu), % 0
0 to 0.050
Iron (Fe), % 17 to 20
0 to 0.7
Manganese (Mn), % 0 to 1.0
1.0 to 1.5
Molybdenum (Mo), % 8.0 to 10
0
Nickel (Ni), % 42.3 to 54
0
Phosphorus (P), % 0 to 0.040
0
Silicon (Si), % 0 to 1.0
0 to 0.6
Sulfur (S), % 0 to 0.030
0
Tungsten (W), % 0.2 to 1.0
0
Zinc (Zn), % 0
0 to 0.1
Residuals, % 0
0 to 0.15