MakeItFrom.com
Menu (ESC)

N06002 Nickel vs. 5059 Aluminum

N06002 nickel belongs to the nickel alloys classification, while 5059 aluminum belongs to the aluminum alloys. There are 30 material properties with values for both materials. Properties with values for just one material (1, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is N06002 nickel and the bottom bar is 5059 aluminum.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 210
69
Elongation at Break, % 41
11 to 25
Fatigue Strength, MPa 250
170 to 240
Poisson's Ratio 0.28
0.33
Shear Modulus, GPa 81
26
Shear Strength, MPa 520
220 to 250
Tensile Strength: Ultimate (UTS), MPa 760
350 to 410
Tensile Strength: Yield (Proof), MPa 310
170 to 300

Thermal Properties

Latent Heat of Fusion, J/g 320
390
Maximum Temperature: Mechanical, °C 990
210
Melting Completion (Liquidus), °C 1360
650
Melting Onset (Solidus), °C 1260
510
Specific Heat Capacity, J/kg-K 450
900
Thermal Conductivity, W/m-K 9.9
110
Thermal Expansion, µm/m-K 14
24

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 1.5
29
Electrical Conductivity: Equal Weight (Specific), % IACS 1.6
95

Otherwise Unclassified Properties

Base Metal Price, % relative 55
9.5
Density, g/cm3 8.5
2.7
Embodied Carbon, kg CO2/kg material 9.3
9.1
Embodied Energy, MJ/kg 130
160
Embodied Water, L/kg 270
1160

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 250
42 to 75
Resilience: Unit (Modulus of Resilience), kJ/m3 230
220 to 650
Stiffness to Weight: Axial, points 14
14
Stiffness to Weight: Bending, points 23
50
Strength to Weight: Axial, points 25
36 to 42
Strength to Weight: Bending, points 22
41 to 45
Thermal Diffusivity, mm2/s 2.6
44
Thermal Shock Resistance, points 19
16 to 18

Alloy Composition

Aluminum (Al), % 0
89.9 to 94
Carbon (C), % 0.050 to 0.15
0
Chromium (Cr), % 20.5 to 23
0 to 0.25
Cobalt (Co), % 0.5 to 2.5
0
Copper (Cu), % 0
0 to 0.25
Iron (Fe), % 17 to 20
0 to 0.5
Magnesium (Mg), % 0
5.0 to 6.0
Manganese (Mn), % 0 to 1.0
0.6 to 1.2
Molybdenum (Mo), % 8.0 to 10
0
Nickel (Ni), % 42.3 to 54
0
Phosphorus (P), % 0 to 0.040
0
Silicon (Si), % 0 to 1.0
0 to 0.45
Sulfur (S), % 0 to 0.030
0
Titanium (Ti), % 0
0 to 0.2
Tungsten (W), % 0.2 to 1.0
0
Zinc (Zn), % 0
0.4 to 0.9
Zirconium (Zr), % 0
0.050 to 0.25
Residuals, % 0
0 to 0.15