MakeItFrom.com
Menu (ESC)

N06002 Nickel vs. A356.0 Aluminum

N06002 nickel belongs to the nickel alloys classification, while A356.0 aluminum belongs to the aluminum alloys. There are 29 material properties with values for both materials. Properties with values for just one material (2, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is N06002 nickel and the bottom bar is A356.0 aluminum.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 210
70
Elongation at Break, % 41
3.0 to 6.0
Fatigue Strength, MPa 250
50 to 90
Poisson's Ratio 0.28
0.33
Shear Modulus, GPa 81
26
Tensile Strength: Ultimate (UTS), MPa 760
160 to 270
Tensile Strength: Yield (Proof), MPa 310
83 to 200

Thermal Properties

Latent Heat of Fusion, J/g 320
500
Maximum Temperature: Mechanical, °C 990
170
Melting Completion (Liquidus), °C 1360
610
Melting Onset (Solidus), °C 1260
570
Specific Heat Capacity, J/kg-K 450
900
Thermal Conductivity, W/m-K 9.9
150
Thermal Expansion, µm/m-K 14
21

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 1.5
40
Electrical Conductivity: Equal Weight (Specific), % IACS 1.6
140

Otherwise Unclassified Properties

Base Metal Price, % relative 55
9.5
Density, g/cm3 8.5
2.6
Embodied Carbon, kg CO2/kg material 9.3
8.0
Embodied Energy, MJ/kg 130
150
Embodied Water, L/kg 270
1110

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 250
4.8 to 15
Resilience: Unit (Modulus of Resilience), kJ/m3 230
49 to 300
Stiffness to Weight: Axial, points 14
15
Stiffness to Weight: Bending, points 23
53
Strength to Weight: Axial, points 25
17 to 29
Strength to Weight: Bending, points 22
25 to 36
Thermal Diffusivity, mm2/s 2.6
64
Thermal Shock Resistance, points 19
7.6 to 13

Alloy Composition

Aluminum (Al), % 0
91.1 to 93.3
Carbon (C), % 0.050 to 0.15
0
Chromium (Cr), % 20.5 to 23
0
Cobalt (Co), % 0.5 to 2.5
0
Copper (Cu), % 0
0 to 0.2
Iron (Fe), % 17 to 20
0 to 0.2
Magnesium (Mg), % 0
0.25 to 0.45
Manganese (Mn), % 0 to 1.0
0 to 0.1
Molybdenum (Mo), % 8.0 to 10
0
Nickel (Ni), % 42.3 to 54
0
Phosphorus (P), % 0 to 0.040
0
Silicon (Si), % 0 to 1.0
6.5 to 7.5
Sulfur (S), % 0 to 0.030
0
Titanium (Ti), % 0
0 to 0.2
Tungsten (W), % 0.2 to 1.0
0
Zinc (Zn), % 0
0 to 0.1
Residuals, % 0
0 to 0.15