MakeItFrom.com
Menu (ESC)

N06002 Nickel vs. AISI 440C Stainless Steel

N06002 nickel belongs to the nickel alloys classification, while AISI 440C stainless steel belongs to the iron alloys. They have a modest 37% of their average alloy composition in common, which, by itself, doesn't mean much. There are 29 material properties with values for both materials. Properties with values for just one material (3, in this case) are not shown.

For each property being compared, the top bar is N06002 nickel and the bottom bar is AISI 440C stainless steel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 210
200
Elongation at Break, % 41
2.0 to 14
Fatigue Strength, MPa 250
260 to 840
Poisson's Ratio 0.28
0.28
Shear Modulus, GPa 81
76
Shear Strength, MPa 520
430 to 1120
Tensile Strength: Ultimate (UTS), MPa 760
710 to 1970
Tensile Strength: Yield (Proof), MPa 310
450 to 1900

Thermal Properties

Latent Heat of Fusion, J/g 320
280
Maximum Temperature: Mechanical, °C 990
870
Melting Completion (Liquidus), °C 1360
1480
Melting Onset (Solidus), °C 1260
1370
Specific Heat Capacity, J/kg-K 450
480
Thermal Conductivity, W/m-K 9.9
22
Thermal Expansion, µm/m-K 14
10

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 1.5
2.4
Electrical Conductivity: Equal Weight (Specific), % IACS 1.6
2.8

Otherwise Unclassified Properties

Base Metal Price, % relative 55
9.0
Density, g/cm3 8.5
7.7
Embodied Carbon, kg CO2/kg material 9.3
2.2
Embodied Energy, MJ/kg 130
31
Embodied Water, L/kg 270
120

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 250
39 to 88
Stiffness to Weight: Axial, points 14
14
Stiffness to Weight: Bending, points 23
25
Strength to Weight: Axial, points 25
26 to 71
Strength to Weight: Bending, points 22
23 to 46
Thermal Diffusivity, mm2/s 2.6
6.0
Thermal Shock Resistance, points 19
26 to 71

Alloy Composition

Carbon (C), % 0.050 to 0.15
1.0 to 1.2
Chromium (Cr), % 20.5 to 23
16 to 18
Cobalt (Co), % 0.5 to 2.5
0
Iron (Fe), % 17 to 20
78 to 83.1
Manganese (Mn), % 0 to 1.0
0 to 1.0
Molybdenum (Mo), % 8.0 to 10
0 to 0.75
Nickel (Ni), % 42.3 to 54
0
Phosphorus (P), % 0 to 0.040
0 to 0.040
Silicon (Si), % 0 to 1.0
0 to 1.0
Sulfur (S), % 0 to 0.030
0 to 0.015
Tungsten (W), % 0.2 to 1.0
0