MakeItFrom.com
Menu (ESC)

N06002 Nickel vs. EN AC-44000 Aluminum

N06002 nickel belongs to the nickel alloys classification, while EN AC-44000 aluminum belongs to the aluminum alloys. There are 29 material properties with values for both materials. Properties with values for just one material (2, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is N06002 nickel and the bottom bar is EN AC-44000 aluminum.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 210
71
Elongation at Break, % 41
7.3
Fatigue Strength, MPa 250
64
Poisson's Ratio 0.28
0.33
Shear Modulus, GPa 81
27
Tensile Strength: Ultimate (UTS), MPa 760
180
Tensile Strength: Yield (Proof), MPa 310
86

Thermal Properties

Latent Heat of Fusion, J/g 320
560
Maximum Temperature: Mechanical, °C 990
170
Melting Completion (Liquidus), °C 1360
590
Melting Onset (Solidus), °C 1260
590
Specific Heat Capacity, J/kg-K 450
910
Thermal Conductivity, W/m-K 9.9
140
Thermal Expansion, µm/m-K 14
21

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 1.5
36
Electrical Conductivity: Equal Weight (Specific), % IACS 1.6
130

Otherwise Unclassified Properties

Base Metal Price, % relative 55
9.5
Density, g/cm3 8.5
2.5
Embodied Carbon, kg CO2/kg material 9.3
7.8
Embodied Energy, MJ/kg 130
150
Embodied Water, L/kg 270
1070

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 250
11
Resilience: Unit (Modulus of Resilience), kJ/m3 230
51
Stiffness to Weight: Axial, points 14
16
Stiffness to Weight: Bending, points 23
55
Strength to Weight: Axial, points 25
20
Strength to Weight: Bending, points 22
28
Thermal Diffusivity, mm2/s 2.6
61
Thermal Shock Resistance, points 19
8.4

Alloy Composition

Aluminum (Al), % 0
87.1 to 90
Carbon (C), % 0.050 to 0.15
0
Chromium (Cr), % 20.5 to 23
0
Cobalt (Co), % 0.5 to 2.5
0
Copper (Cu), % 0
0 to 0.050
Iron (Fe), % 17 to 20
0 to 0.19
Magnesium (Mg), % 0
0 to 0.45
Manganese (Mn), % 0 to 1.0
0 to 0.1
Molybdenum (Mo), % 8.0 to 10
0
Nickel (Ni), % 42.3 to 54
0
Phosphorus (P), % 0 to 0.040
0
Silicon (Si), % 0 to 1.0
10 to 11.8
Sulfur (S), % 0 to 0.030
0
Titanium (Ti), % 0
0 to 0.15
Tungsten (W), % 0.2 to 1.0
0
Zinc (Zn), % 0
0 to 0.070
Residuals, % 0
0 to 0.1