MakeItFrom.com
Menu (ESC)

N06002 Nickel vs. CC751S Brass

N06002 nickel belongs to the nickel alloys classification, while CC751S brass belongs to the copper alloys. There are 28 material properties with values for both materials. Properties with values for just one material (3, in this case) are not shown.

For each property being compared, the top bar is N06002 nickel and the bottom bar is CC751S brass.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 210
110
Elongation at Break, % 41
5.6
Poisson's Ratio 0.28
0.31
Shear Modulus, GPa 81
40
Tensile Strength: Ultimate (UTS), MPa 760
450
Tensile Strength: Yield (Proof), MPa 310
320

Thermal Properties

Latent Heat of Fusion, J/g 320
190
Maximum Temperature: Mechanical, °C 990
130
Melting Completion (Liquidus), °C 1360
850
Melting Onset (Solidus), °C 1260
810
Specific Heat Capacity, J/kg-K 450
390
Thermal Conductivity, W/m-K 9.9
110
Thermal Expansion, µm/m-K 14
20

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 1.5
25
Electrical Conductivity: Equal Weight (Specific), % IACS 1.6
28

Otherwise Unclassified Properties

Base Metal Price, % relative 55
24
Density, g/cm3 8.5
8.1
Embodied Carbon, kg CO2/kg material 9.3
2.8
Embodied Energy, MJ/kg 130
46
Embodied Water, L/kg 270
330

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 250
23
Resilience: Unit (Modulus of Resilience), kJ/m3 230
480
Stiffness to Weight: Axial, points 14
7.2
Stiffness to Weight: Bending, points 23
19
Strength to Weight: Axial, points 25
15
Strength to Weight: Bending, points 22
16
Thermal Diffusivity, mm2/s 2.6
35
Thermal Shock Resistance, points 19
15

Alloy Composition

Aluminum (Al), % 0
0 to 0.1
Antimony (Sb), % 0
0 to 0.5
Carbon (C), % 0.050 to 0.15
0
Chromium (Cr), % 20.5 to 23
0
Cobalt (Co), % 0.5 to 2.5
0
Copper (Cu), % 0
62.7 to 66
Iron (Fe), % 17 to 20
0.25 to 0.5
Lead (Pb), % 0
0.8 to 2.2
Manganese (Mn), % 0 to 1.0
0 to 0.15
Molybdenum (Mo), % 8.0 to 10
0
Nickel (Ni), % 42.3 to 54
0 to 0.8
Phosphorus (P), % 0 to 0.040
0
Silicon (Si), % 0 to 1.0
0.65 to 1.1
Sulfur (S), % 0 to 0.030
0
Tin (Sn), % 0
0 to 0.8
Tungsten (W), % 0.2 to 1.0
0
Zinc (Zn), % 0
27.9 to 35.6