MakeItFrom.com
Menu (ESC)

N06002 Nickel vs. C82700 Copper

N06002 nickel belongs to the nickel alloys classification, while C82700 copper belongs to the copper alloys. There are 27 material properties with values for both materials. Properties with values for just one material (4, in this case) are not shown.

For each property being compared, the top bar is N06002 nickel and the bottom bar is C82700 copper.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 210
120
Elongation at Break, % 41
1.8
Poisson's Ratio 0.28
0.33
Shear Modulus, GPa 81
46
Tensile Strength: Ultimate (UTS), MPa 760
1200
Tensile Strength: Yield (Proof), MPa 310
1020

Thermal Properties

Latent Heat of Fusion, J/g 320
240
Maximum Temperature: Mechanical, °C 990
300
Melting Completion (Liquidus), °C 1360
950
Melting Onset (Solidus), °C 1260
860
Specific Heat Capacity, J/kg-K 450
380
Thermal Conductivity, W/m-K 9.9
130
Thermal Expansion, µm/m-K 14
17

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 1.5
20
Electrical Conductivity: Equal Weight (Specific), % IACS 1.6
21

Otherwise Unclassified Properties

Density, g/cm3 8.5
8.7
Embodied Carbon, kg CO2/kg material 9.3
12
Embodied Energy, MJ/kg 130
180
Embodied Water, L/kg 270
310

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 250
21
Resilience: Unit (Modulus of Resilience), kJ/m3 230
4260
Stiffness to Weight: Axial, points 14
7.8
Stiffness to Weight: Bending, points 23
19
Strength to Weight: Axial, points 25
38
Strength to Weight: Bending, points 22
29
Thermal Diffusivity, mm2/s 2.6
39
Thermal Shock Resistance, points 19
41

Alloy Composition

Aluminum (Al), % 0
0 to 0.15
Beryllium (Be), % 0
2.4 to 2.6
Carbon (C), % 0.050 to 0.15
0
Chromium (Cr), % 20.5 to 23
0 to 0.090
Cobalt (Co), % 0.5 to 2.5
0
Copper (Cu), % 0
94.6 to 96.7
Iron (Fe), % 17 to 20
0 to 0.25
Lead (Pb), % 0
0 to 0.020
Manganese (Mn), % 0 to 1.0
0
Molybdenum (Mo), % 8.0 to 10
0
Nickel (Ni), % 42.3 to 54
1.0 to 1.5
Phosphorus (P), % 0 to 0.040
0
Silicon (Si), % 0 to 1.0
0 to 0.15
Sulfur (S), % 0 to 0.030
0
Tin (Sn), % 0
0 to 0.1
Tungsten (W), % 0.2 to 1.0
0
Zinc (Zn), % 0
0 to 0.1
Residuals, % 0
0 to 0.5