MakeItFrom.com
Menu (ESC)

N06002 Nickel vs. C85200 Brass

N06002 nickel belongs to the nickel alloys classification, while C85200 brass belongs to the copper alloys. There are 28 material properties with values for both materials. Properties with values for just one material (2, in this case) are not shown.

For each property being compared, the top bar is N06002 nickel and the bottom bar is C85200 brass.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 210
110
Elongation at Break, % 41
28
Poisson's Ratio 0.28
0.32
Shear Modulus, GPa 81
40
Tensile Strength: Ultimate (UTS), MPa 760
270
Tensile Strength: Yield (Proof), MPa 310
95

Thermal Properties

Latent Heat of Fusion, J/g 320
180
Maximum Temperature: Mechanical, °C 990
140
Melting Completion (Liquidus), °C 1360
940
Melting Onset (Solidus), °C 1260
930
Specific Heat Capacity, J/kg-K 450
380
Thermal Conductivity, W/m-K 9.9
84
Thermal Expansion, µm/m-K 14
20

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 1.5
18
Electrical Conductivity: Equal Weight (Specific), % IACS 1.6
19

Otherwise Unclassified Properties

Base Metal Price, % relative 55
26
Density, g/cm3 8.5
8.4
Embodied Carbon, kg CO2/kg material 9.3
2.8
Embodied Energy, MJ/kg 130
46
Embodied Water, L/kg 270
330

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 250
59
Resilience: Unit (Modulus of Resilience), kJ/m3 230
42
Stiffness to Weight: Axial, points 14
7.0
Stiffness to Weight: Bending, points 23
19
Strength to Weight: Axial, points 25
8.9
Strength to Weight: Bending, points 22
11
Thermal Diffusivity, mm2/s 2.6
27
Thermal Shock Resistance, points 19
9.3

Alloy Composition

Aluminum (Al), % 0
0 to 0.0050
Antimony (Sb), % 0
0 to 0.2
Carbon (C), % 0.050 to 0.15
0
Chromium (Cr), % 20.5 to 23
0
Cobalt (Co), % 0.5 to 2.5
0
Copper (Cu), % 0
70 to 74
Iron (Fe), % 17 to 20
0 to 0.6
Lead (Pb), % 0
1.5 to 3.8
Manganese (Mn), % 0 to 1.0
0
Molybdenum (Mo), % 8.0 to 10
0
Nickel (Ni), % 42.3 to 54
0 to 1.0
Phosphorus (P), % 0 to 0.040
0 to 0.020
Silicon (Si), % 0 to 1.0
0 to 0.050
Sulfur (S), % 0 to 0.030
0 to 0.050
Tin (Sn), % 0
0.7 to 2.0
Tungsten (W), % 0.2 to 1.0
0
Zinc (Zn), % 0
20 to 27
Residuals, % 0
0 to 0.9