MakeItFrom.com
Menu (ESC)

N06002 Nickel vs. C86400 Bronze

N06002 nickel belongs to the nickel alloys classification, while C86400 bronze belongs to the copper alloys. There are 28 material properties with values for both materials. Properties with values for just one material (2, in this case) are not shown.

For each property being compared, the top bar is N06002 nickel and the bottom bar is C86400 bronze.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 210
100
Elongation at Break, % 41
17
Poisson's Ratio 0.28
0.31
Shear Modulus, GPa 81
40
Tensile Strength: Ultimate (UTS), MPa 760
470
Tensile Strength: Yield (Proof), MPa 310
150

Thermal Properties

Latent Heat of Fusion, J/g 320
170
Maximum Temperature: Mechanical, °C 990
120
Melting Completion (Liquidus), °C 1360
880
Melting Onset (Solidus), °C 1260
860
Specific Heat Capacity, J/kg-K 450
390
Thermal Conductivity, W/m-K 9.9
88
Thermal Expansion, µm/m-K 14
21

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 1.5
19
Electrical Conductivity: Equal Weight (Specific), % IACS 1.6
22

Otherwise Unclassified Properties

Base Metal Price, % relative 55
23
Density, g/cm3 8.5
7.9
Embodied Carbon, kg CO2/kg material 9.3
2.8
Embodied Energy, MJ/kg 130
48
Embodied Water, L/kg 270
330

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 250
63
Resilience: Unit (Modulus of Resilience), kJ/m3 230
110
Stiffness to Weight: Axial, points 14
7.3
Stiffness to Weight: Bending, points 23
20
Strength to Weight: Axial, points 25
16
Strength to Weight: Bending, points 22
17
Thermal Diffusivity, mm2/s 2.6
29
Thermal Shock Resistance, points 19
16

Alloy Composition

Aluminum (Al), % 0
0.5 to 1.5
Carbon (C), % 0.050 to 0.15
0
Chromium (Cr), % 20.5 to 23
0
Cobalt (Co), % 0.5 to 2.5
0
Copper (Cu), % 0
56 to 62
Iron (Fe), % 17 to 20
0.4 to 2.0
Lead (Pb), % 0
0.5 to 1.5
Manganese (Mn), % 0 to 1.0
0.1 to 1.0
Molybdenum (Mo), % 8.0 to 10
0
Nickel (Ni), % 42.3 to 54
0 to 1.0
Phosphorus (P), % 0 to 0.040
0
Silicon (Si), % 0 to 1.0
0
Sulfur (S), % 0 to 0.030
0
Tin (Sn), % 0
0.5 to 1.5
Tungsten (W), % 0.2 to 1.0
0
Zinc (Zn), % 0
34 to 42
Residuals, % 0
0 to 1.0