MakeItFrom.com
Menu (ESC)

N06002 Nickel vs. C93200 Bronze

N06002 nickel belongs to the nickel alloys classification, while C93200 bronze belongs to the copper alloys. There are 29 material properties with values for both materials. Properties with values for just one material (4, in this case) are not shown.

For each property being compared, the top bar is N06002 nickel and the bottom bar is C93200 bronze.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 210
100
Elongation at Break, % 41
20
Fatigue Strength, MPa 250
110
Poisson's Ratio 0.28
0.35
Shear Modulus, GPa 81
38
Tensile Strength: Ultimate (UTS), MPa 760
240
Tensile Strength: Yield (Proof), MPa 310
130

Thermal Properties

Latent Heat of Fusion, J/g 320
180
Maximum Temperature: Mechanical, °C 990
160
Melting Completion (Liquidus), °C 1360
980
Melting Onset (Solidus), °C 1260
850
Specific Heat Capacity, J/kg-K 450
360
Thermal Conductivity, W/m-K 9.9
59
Thermal Expansion, µm/m-K 14
18

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 1.5
12
Electrical Conductivity: Equal Weight (Specific), % IACS 1.6
12

Otherwise Unclassified Properties

Base Metal Price, % relative 55
32
Density, g/cm3 8.5
8.8
Embodied Carbon, kg CO2/kg material 9.3
3.2
Embodied Energy, MJ/kg 130
52
Embodied Water, L/kg 270
370

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 250
40
Resilience: Unit (Modulus of Resilience), kJ/m3 230
76
Stiffness to Weight: Axial, points 14
6.5
Stiffness to Weight: Bending, points 23
18
Strength to Weight: Axial, points 25
7.5
Strength to Weight: Bending, points 22
9.7
Thermal Diffusivity, mm2/s 2.6
18
Thermal Shock Resistance, points 19
9.3

Alloy Composition

Aluminum (Al), % 0
0 to 0.0050
Antimony (Sb), % 0
0 to 0.35
Carbon (C), % 0.050 to 0.15
0
Chromium (Cr), % 20.5 to 23
0
Cobalt (Co), % 0.5 to 2.5
0
Copper (Cu), % 0
81 to 85
Iron (Fe), % 17 to 20
0 to 0.2
Lead (Pb), % 0
6.0 to 8.0
Manganese (Mn), % 0 to 1.0
0
Molybdenum (Mo), % 8.0 to 10
0
Nickel (Ni), % 42.3 to 54
0 to 1.0
Phosphorus (P), % 0 to 0.040
0 to 1.5
Silicon (Si), % 0 to 1.0
0 to 0.0050
Sulfur (S), % 0 to 0.030
0 to 0.080
Tin (Sn), % 0
6.3 to 7.5
Tungsten (W), % 0.2 to 1.0
0
Zinc (Zn), % 0
2.0 to 4.0
Residuals, % 0
0 to 1.0